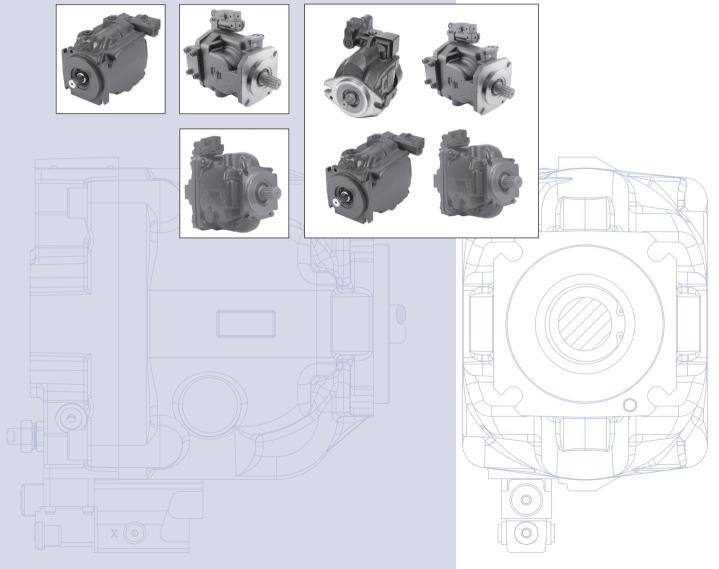
HIVIC hydraulics

(11) 4174-3300 www.hmchydraulics.com.br

Catálogos Online



revendedor autorizado.

Technical Information

Revisions

History of Revisions

Table of Revisions

Date	Page	Changed	Rev.
October 2012	various	add electric controls, minor edits	GP
September 2012	various	various edits and corrections	GO
August 2012	14-15,62	added charge pump circuits, added S5 shaft	GN
July 2012	various	dimension changes to shaft drawings and aux. pad O-rings	GM
June 2012	17, 23, 44, 72, 92	Remove bearing life tables for each frame size	GL
March 2012	110	delete running cover dimensions drawing	GK
January 2012	various	add system instability, pg 20 , various model code edits	GJ
December 2011	75	correction to A2 shaft description	GI
October 2011	various	multiple changes and corrections	GH
June 2011	various	edit to technical specifications, edit to model codes	GG
May 2011	56	correction to schematic	GF
April 2011	108	change to spline engagement dimensions	GE
March 2011	various	numerous corrections throughout	GD
January 2011	45,50	060B max. speed 3120, mounting flange corrections	GC
November 2010	45	add bearing life data for 065C, 075C	GB
October 2010	various	edits and changes - major reorganization	GA
October 2009	22, 27, 31, 41, 43, 47	various minor edits, add EJ, EA control dimensions	FO
July 2009	34, 28	remove T2 shaft option from L and K Frames	FN
May 2009	various	revise fitting depth warning to LS port X	FM
March 2009	various	add fitting depth warning to LS port X	FL
October 2008	62,65	add SAE-C two bolt housing	FK
September 2008	58-62	dimension changes for Frame J	FJ
June 2008	78, 93, 94, 95	various minor edits, removed S5 shaft from Frame E	FI
May 2008	32, 74, 75, 92	correction to schematics drawings	FH
April 2008	76	correction to S2 spline width (inch measurement only)	FG
April 2008	52,53	correction to schematics drawings	FG
April 2008	27, 50, 72, 89	add Load sensing - RP and BP must be 20 bar	FF
April 2008	76	Correction to S2 shaft - Class 6 and 37.91 mm length	FF
March 2008	4	Correction to TOC	FE
February 2008	Various	Add LS setting to specifications for each frame	FD
December 2007	Various	Relocate F and E sections, add displacement limiter info.	FC
November 2007	50	Change load sensing setting - bar increments	FB
September 2007	Various	Add Frame F, remove Frame G, and many edits	FA
November 2006	51, 52, 53	Revised schematics information	E
August 2005	-	Removed Frame H, added Frame J	D
April 2003		Added Frame E	С
May 2001	-	Added Frame H and Frame G	В
May 1999	-	First printing	Α

© 2012 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed material. Sauer -Danfoss reserves the right to alter its products without prior notice. This also applies to products already ordered provided that such alterations can be made without affecting agreed specifications. All trademarks in this material are properties of their respective owners. Sauer-Danfoss, the Sauer-Danfoss logotype, the Sauer-Danfoss S-icon, PLUS+1™, What really matters is inside® and Know-How in Motion™ are trademarks of the Sauer-Danfoss Group.

Front cover illustrations: F301 389, P003 515

Contents

General information	Overview	5
	Design	
	Benefits	
	Typical applications	6
	The Series 45 product family	
	Load sensing open circuit system	
	Servo Control Orifice	
	Pressure compensated controls	
	Remote pressure compensated controls	
	Load sensing controls	
	Electric Proportional Controls (EPC)	
	Electric On-Off Controls	
	Electric dump valve PC/LS controls	
	Charge Pump Circuits	
	Operating parameters	
	Design parameters	
	Sizing equations	32
Frames L and K	Design	33
Traines E and K	Technical Specifications	
	Order code	
	Performance L25C	
	Performance L30D	
	Performance K38C	
	Performance K45D	
	Hydrauilic Controls	
	Electric Controls	
	Installation drawings	
	Displacement limiter	
Frame J	Design	55
Trumes	Technical Specifications	
	Order code	
	Performance J45B	
	Performance J51B	
	Performance J60B	
	Performance J65C	
	Performance J75C	
	Pressure Compensated Controls	
	Remote Pressure Compensated Controls	
	Load sensing/Pressure compensated Controls	
	Electric Controls	
	Input shafts	
	Installation drawings	
	Auxiliary mounting pads	
	Displacement limiter	

Contents

Frame F	Design	87
	Technical Specifications	88
	Order code	
	Performance F74B	
	Performance F90C	
	Hydraulic Controls	
	Electric Controls	
	Input shafts	100
	Installation drawings	101
	Auxiliary mounting pads	
	Displacement limiter	108
Frame E	Design	100
Traine L	Technical Specifications	
	Order code	
	Performance E100B	
	Performance E130B	
	Performance E147C	
	Hydraulic Controls	118
	Electric Controls	120
	Input shafts	125
	Installation drawings	
	Auxiliary mounting pads	

Displacement Limiters......133

General information

Overview

Series 45 is a complete family of high performance variable displacement, axial piston pumps. Each frame is designed to exceed the demanding work function requirements of the mobile equipment marketplace. Each frame within the Series 45 family is uniquely designed to optimize performance, size, and cost.

Design

High Performance

- Displacements from 25 cm³ 147 cm³ [1.53 8.97 in³/rev]
- Speeds up to 3600 rpm
- Pressures up to 310 bar [4495 psi]
- Variety of control system options including load sensing and pressure compensated

Latest Technology

- Customer-driven using quality function deployment (QFD) and design for manufacturability (DFM) techniques
- Optimized design maximizes efficiency and guiet operation
- Computer-modeled castings to optimize inlet conditions for maximum pump speed
- Compact package size minimizing installation space requirements
- Heavy-duty tapered roller bearings for long life
- Single piece rigid housing to reduce noise and leak paths
- Integrated controls for high speed response and system stability

Reliability

- Designed to rigorous standards
- Proven in both laboratory and field
- Manufactured to rigid quality standards
- Long service life
- Significantly fewer parts
- No gasket joints
- Robust input shaft bearings to handle large external shaft loads
- Integrated gauge ports for monitoring operating conditions

General information

Benefits

Reduced Installation Costs

- Through-drive capability for multi-circuit systems
- Range of mounting flanges, shafts and porting options for ease of installation
- Compact size minimizes installation space requirements
- Help meet engine emission standards
- Reduce engine size by managing power usage more effectively

Reduce Operating Costs

- Optimize machine power usage to maximize fuel economy
- Simple design reduces service requirements
- Heavy duty taper roller shaft bearings provide long service life

Increased Customer Satisfaction

- Reduced noise for operator comfort
- High performance increases productivity

Reduced Heat Load on Cooling System

- High efficiency reduces hydraulic heat generation
- Allows for smaller cooling packages

Typical applications

- Cranes
- Telescopic handlers
- Forklift trucks
- Wheel loaders
- Sweepers
- Backhoe loaders
- Forestry and agricultural machinery
- Fan drives

- **Paving Machines**
- Mining Equipment
- Mowers
- Dozers
- Drilling Machines
- Mini-Excavators
- Other Applications

SAUER DANFOSS Series 45 Axial Piston C Technical Information Series 45 Axial Piston Open Circuit Pumps

General information

The Series 45 product family

Basic units

The series 45 family of open circuit, variable piston pumps, offers a range of displacements from 25 to 147 cm³/rev [1.53 to 8.97 in³/rev]. With maximum speeds up to 3600 rpm and continuous operating pressures up to 310 bar [4495 psi], product selection is easily tailored to the flow and pressure requirements of individual applications.

K/L Frame

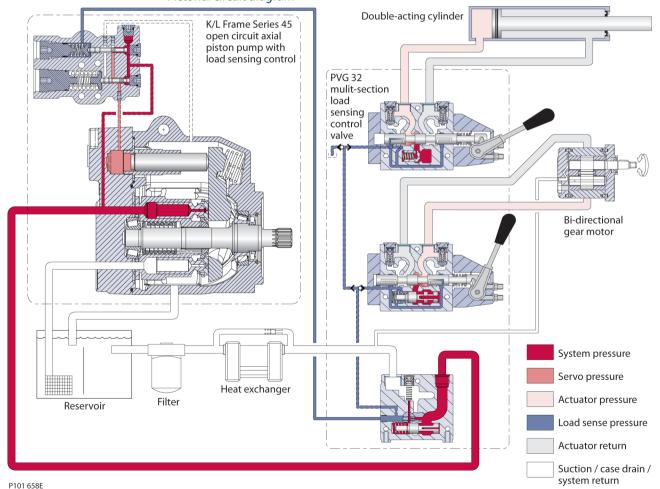
J Frame

E Frame

General performance specifications for the series 45 pump family

		5: 1		Speed				Pres	sure		Theoretical flow			
Pump		Displac	cement	Continuous	Max.	Min.	Co	ont.	М	ax.	(at rated speed)		Mounting	
Frame	Model	cm³	in³	min ⁻¹ (rpm)	min ⁻¹ (rpm)	min ⁻¹ (rpm)	bar	psi	bar	psi	US gal/min	l/min	Flange	
Frame L	L25C	25	1.53	3200	3600	500	260	3770	350	5075	21.0	80.0	SAE B - 2 bolt	
See page 34	L30D	30	1.83	3200	3600	500	210	3045	300	4350	25.4	96.0	SAE B - 2 bolt	
Frame K	K38C	38	2.32	2650	2800	500	260	3770	350	5075	26.6	100.7	SAE B - 2 bolt	
See page 34	K45D	45	2.75	2650	2800	500	210	3045	300	4350	31.5	119.3	SAE B - 2 bolt	
	J45B	45	2.75	2800	3360	500	310	4495	400	5800	33.3	126.0	SAE B 2-bolt SAE C 2 and 4-bolt	
	J51B	51	3.11	2700	3240	500	310	4495	400	5800	36.4	137.7	SAE B 2-bolt SAE C 2 and 4-bolt	
Frame J See page 56	J60B	60	3.66	2600	3120	500	310	4495	400	5800	41.2	156.0	SAE B 2-bolt SAE C 2 and 4-bolt	
	J65C	65	3.97	2500	3000	500	260	3770	350	5075	42.9	162.6	SAE B 2-bolt SAE C 2 and 4-bolt	
	J75C	75	4.58	2400	2880	500	260	3770	350	5075	47.5	180.0	SAE B 2-bolt SAE C 2 and 4-bolt	
Frame F See page 87	F74B	74	4.52	2400	2800	500	310	4495	400	5800	46.9	177.6	SAE B 2-bolt SAE C 4-bolt	
	F90C	90	5.49	2200	2600	500	260	3770	350	5075	52.3	198	SAE B 2-bolt SAE C 4-bol	
Frame E	E100B	100	6.10	2450	2880	500	310	4495	400	5800	64.7	245.0	SAE C 4-bolt	
See page 109	E130B	130	7.93	2200	2600	500	310	4495	400	5800	75.5	286.0	SAE C 4-bolt	
	E147C	147	8.97	2100	2475	500	260	3770	350	5075	81.5	308.7	SAE C 4-bolt	

General information

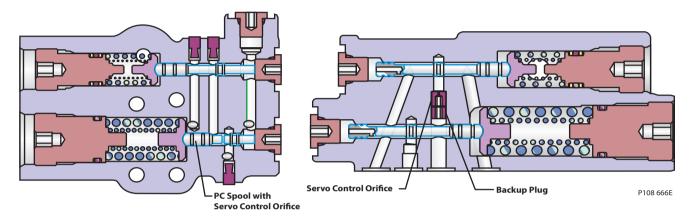

Load sensing open circuit system

The pump receives fluid directly from the reservoir through the inlet line. A screen in the inlet line protects the pump from large contaminants. The pump outlet feeds directional control valves such as PVG-32's, hydraulic integrated circuits (HIC), and other types of control valves. The PVG valve directs pump flow to cylinders, motors and other work functions. A heat exchanger cools the fluid returning from the valve. A filter cleans the fluid before it returns to the reservoir.

Flow in the circuit determines the speed of the actuators. The position of the PVG valve determines the flow demand. A hydraulic pressure signal (LS signal) communicates demand to the pump control. The pump control monitors the pressure differential between pump outlet and the LS signal, and regulates servo pressure to control the swashplate angle. Swashplate angle determines pump flow.

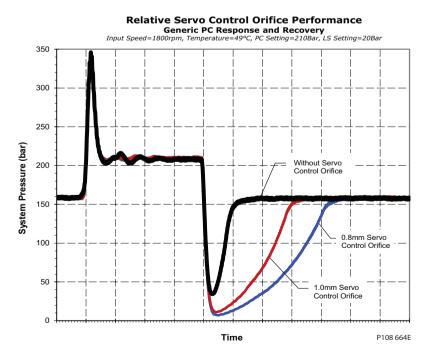
Actuator load determines system pressure. The pump control monitors system pressure and will decrease the swashplate angle to reduce flow if system pressure reaches the PC setting. A secondary system relief valve in the PVG valve acts as a back-up to control system pressure.

Pictorial circuit diagram



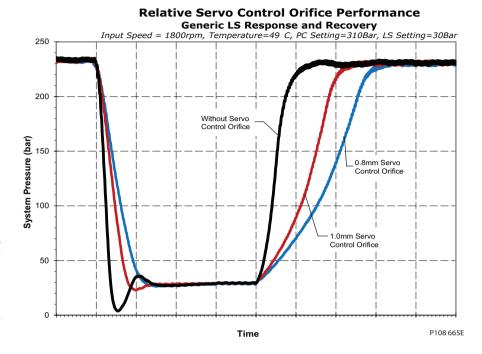
General information

Servo Control Orifice


Servo Control Orifice Principle

Series 45 controls offer an optional servo control orifice (not available with Pressure Compensation only Controls) available to aid in tuning system performance. The optional servo control orifice restricts flow to and from the servo system in the pump, effectively damping the motion of the servo system.

Servo Control Orifice Performance


The use of the Servo Control Orifice will provide additional damping to the pump, while the response of the pump to pressure spikes remains unaffected. The Pressure Compensation Function response and recovery, as well as the Load Sense Function response and recovery are shown below, and outline the relative impact in response and recovery of the Servo Control Orifices. Note that these graphs are meant as a generic comparison only, and that unique effects on response and recovery times for each specific frame are shown later in this section.

General information

Servo Control Orifice (continued)

We recommend that systems experiencing instability use a Servo Control Orifice. Start with the largest size orifice available, and work down to the smaller size until the system is satisfactorily tuned. All Fan-Drive systems should start with a 0.8mm Servo Control Orifice if possible. Systems including motors are more likely to require the Servo Control Orifice option.

Use of a Servo Control Orifice adds a damping coefficient to each Series 45 Frame. This damping ratio can be multiplied by the specific Frame/Displacement/Control selection's response and recovery times, to determine the final damped response and recovery times. Unique response and recovery times can be found in each frame-specific chapter, in the desired control section. The damped response and recovery relationship is shown below.

Response (Damped)= Response (Specific Disp.Control) *Damping Ratio (ζ)

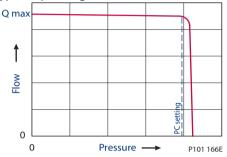
Recovery (Damped)= Recovery (Specific Disp.Control) *Damping Ratio (ζ)

Damping Ratios (ζ) are unique to each orifice size, and can impact each frame differently. Below are the Damping Ratios for each Servo Control Orifice Size by frame.

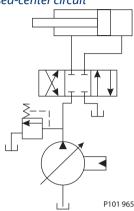
		Damping Ration (ζ) - Servo Control Orifice							
Frame	1.0 mm Servo Damping Orifice			0.8 mm Servo Damping Orifice					
	PC Response	PC Recovery	LS Response	LS Recovery	PC Response	PC Recovery	LS Response	LS Recovery	
E-Frame*		2.3	2.0	2.0		3.2	2.6	2.6	
F-Frame*	2.3 2.0 2.0		3.2	2.6	2.6				
J-Frame*	1 (No Effect)	2.3	2.0	2.0	(No Effect)	1 (No Effect)	3.2	2.6	2.6
K-Frame**	(110 Ellect)	2.3	2.3	2.3	(110 Effect)	3.7	3.1	3.1	
L-Frame**		2.3	2.3	2.3		3.7	3.1	3.1	

^{*} PC Response from 160 bar to 210 bar, PC Recovery from 210 bar to 160 bar at 1800 rpm: LS Response from 230 bar to 30 bar, LS Recovery from 30 bar to 230 bar at 1800 rpm.

^{**} PC Response from 160 bar to 210 bar, PC Recovery from 210 bar to 160 bar at 1800 rpm: LS Response from 160 bar to 20 bar, LS Recovery from 20 bar to 160 bar at 1800 rpm.


General information

Pressure compensated controls


Operation

The PC control maintains constant system pressure in the hydraulic circuit by varying the output flow of the pump. Used with a closed center control valve, the pump remains in high pressure standby mode at the PC setting with zero flow until the function is actuated. This condition is often called a **dead head** condition.

Typical operating curve

Simple closed-center circuit

Once the closed center valve is opened, the PC control senses the immediate drop in system pressure and increases pump flow by increasing the swashplate

angle. The pump continues to increase flow until system pressure reaches the PC setting. If system pressure exceeds the PC setting, the PC control reduces the swashplate angle to maintain system pressure by reducing flow. The PC control continues to monitor system pressure and changes swashplate angle to match the output flow with the work function pressure requirements.

If the demand for flow exceeds the capacity of the pump, the PC control directs the pump to maximum displacement. In this condition, actual system pressure depends on the actuator load.

For additional system protection, install a relief valve in the pump outlet line.

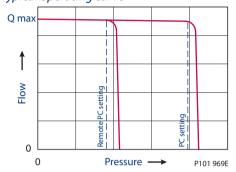
Each section includes control schematic diagrams, setting ranges, and response / recovery times for each control available. **Response** is the time (in milliseconds) for the pump to reach zero displacement when commanded by the control. **Recovery** is the time (in milliseconds) for the pump to reach full displacement when commanded by the control. Actual times can vary depending on application conditions.

Pressure compensated system characteristics

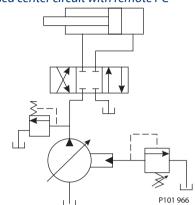
- Constant pressure and variable flow
- High pressure standby mode when flow is not needed
- System flow adjusts to meet system requirements
- Single pump can provide flow to multiple work functions
- Quick response to system flow and pressure requirements

Typical applications for pressure compensated systems

- Constant force cylinders (bailers, compactors, refuse trucks)
- On/off fan drives
- Drill rigs
- Sweepers
- Trenchers



General information


Remote pressure compensated controls

The remote PC control is a two-stage control that allows multiple PC settings. Remote PC controls are commonly used in applications requiring low and high pressure PC operation.

Typical operating curve

Closed center circuit with remote PC

The remote PC control uses a pilot line connected to an external hydraulic valve. The external valve changes pressure in the pilot line, causing the PC control to operate at a lower pressure. When the pilot line is vented to reservoir, the pump maintains pressure at the load sense setting. When pilot flow is blocked, the pump maintains pressure at the PC setting. An on-off solenoid valve can be used in the pilot line to create a low-pressure standby mode. A proportional solenoid valve, coupled with a microprocessor control, can produce an infinite range of operating pressures between the low pressure standby setting and the PC setting.

Each section includes control schematic diagrams, setting ranges, and response / recovery times for each control available. **Response** is the time (in milliseconds) for the pump to reach zero displacement when commanded by the control. **Recovery** is the time (in milliseconds) for the pump to reach full displacement when commanded by the control. Actual times can vary depending on application conditions.

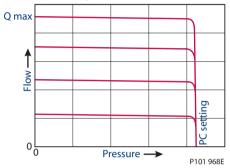
Size the external valve and plumbing for a pilot flow of 3.8 l/min [1 US gal/min]. For additional system protection, install a relief valve in the pump outlet line.

Remote pressure compensated system characteristics

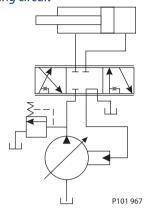
- Constant pressure and variable flow
- High or low pressure standby mode when flow is not needed
- System flow adjusts to meet system requirements
- Single pump can provide flow to multiple work functions
- Quick response to system flow and pressure requirements

Typical applications for remote pressure compensated systems

- Modulating fan drives
- Anti-stall control with engine speed feedback
- Front wheel assist
- Road rollers
- Combine harvesters
- Wood chippers


General information

Load sensing controls


Operation

The LS control matches system requirements for both pressure and flow in the circuit regardless of the working pressure. Used with a closed center control valve, the pump remains in low-pressure standby mode with zero flow until the valve is opened. The LS setting determines standby pressure.

Typical operating curve

Load sensing circuit

Most load sensing systems use parallel, closed center, control valves with special porting that allows the highest work function pressure (LS signal) to feed back to the LS control. **Margin pressure** is the difference between system pressure and the LS signal pressure. The LS control monitors margin pressure to read system demand. A drop in margin pressure means the system needs more flow. A rise in margin pressure tells the LS control to decrease flow.

LS control with bleed orifice

The load sense signal line requires a bleed orifice to prevent high-pressure lockup of the pump control. Most load-sensing control valves include this orifice. An optional internal bleed orifice is available, for use with control valves that do not internally bleed the LS signal to tank.

Integral PC function

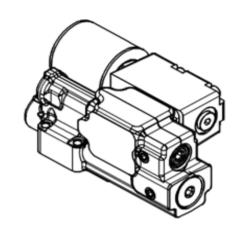
The LS control also performs as a PC control, decreasing pump flow when system pressure reaches the PC setting. The pressure compensating function has priority over the load sensing function.

For additional system protection, install a relief valve in the pump outlet line.

Each section includes control schematic diagrams, setting ranges, and response / recovery times for each control available. **Response** is the time (in milliseconds) for the pump to reach zero displacement when commanded by the control. **Recovery** is the time (in milliseconds) for the pump to reach full displacement when commanded by the control. Actual times can vary depending on application conditions.

Load sensing system characteristics

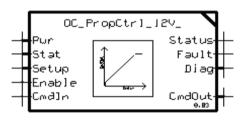
- Variable pressure and flow
- Low pressure standby mode when flow is not needed
- System flow adjusted to meet system requirements
- Lower torque requirements during engine start-up
- Single pump can supply flow and regulate pressure for multiple circuits
- Quick response to system flow and pressure requirements


General information

Electric Proportional Controls (EPC)

PLUS+1 Compliance

All Series 45 Electric controls have met and passed the Sauer-Danfoss PLUS+1 compliance standard testing, and as such, this Series 45 control is PLUS+1 compliant. PLUS+1 compliance blocks are available on the Sauer-Danfoss website, within the PLUS+1 Guide section.



For fan-drive systems, and systems with motors, use a minimum 15bar LS setting to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20bar LS setting is recommended as a starting point for all new applications.

Electric Proportional Control Principle

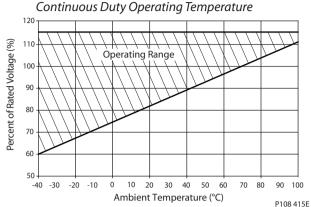
The Electric Proportional Control consists of a proportional solenoid integrated into a Remote Pressure Compensated control. This control allows the pump to be operated at any pressure limit between the Load Sense and Pressure Compensation settings by varying the current sent to the solenoid.

Electric Proportional Control Response/Recovery

S45 Electric Proportional Controls require the use of a servo control orifice, and are available with two possible servo control orifice options. The servo control orifice is used to enhance system stability, as well as dampen the pump reactiveness. A smaller orifice diameter will add dampening to the pump reactiveness, while a larger orifice will allow quicker pump reaction. Fan-Drive applications, as well as systems with the pump supplying motors, are recommended to use the 0.8mm diameter orifice to enhance system stability.

Module "G" Options for Electric Proportional Controls						
Frame	"E" - 0.8mm Orifice	"F" - 1.0mm Orifice				
All Frames	•	•				

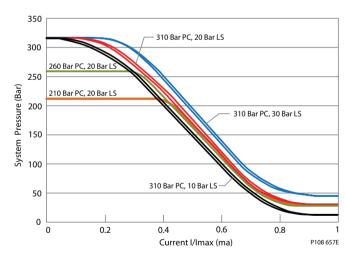
Specific Electric Proportional Control Response/Recovery times are shown for the available servo control orifice options in the control section within each specific frame section. These times represent the response from 100bar to 200bar, and recovery from 200bar to 100bar. As the upper pressure approaches the PC setting, the PC function will begin to assist in clipping pressure overshoots during the pump's response, and will decrease the response times of the pump to equal those of the PC response.


Electric Proportional Control Pressure vs. Flow Characteristic

The Electric Proportional Controls continuous duty operating temperature range is shown below; this guideline should be followed as well as the maximum current limitations. Note that rated voltage refers to either a 12V or 24V coil. Under high temperature conditions, current required to operate the solenoid increases.

General information

Electric Proportional Controls (EPC) (continued)



Electric Proportional Control Characteristic – Normally Closed

When an electric current is sent to the Normally Closed configuration control, the pump pressure decreases proportional to an increase in current. When the load in the system changes, the pump will adjust its displacement to maintain the pressure demanded by the controlling current. This control is especially useful for fan-drives, due to the direct relationship between fan-speed and pump pressure.

Due to the nature of Electric Proportional Controls, the relationship between current and pump pressure is unique for each individual PC/LS pressure setting combination. The relationship between different PC settings and different LS settings on the Pressure vs. Current Characteristic curve are shown below. The hydraulic schematic for the Normally Closed Electric Proportional control is shown below as well.

Operating Pressure vs. Input Current (N.C. EPC)

Solenoid Data - Normally Closed

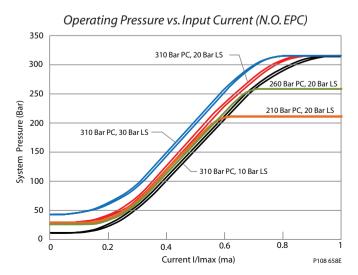
Solemoid Data - Normany Closed						
Voltage	12V	24V				
Maximum Current	1500 mA	665 mA				
Inrush Current	1700 mA	800 mA				
Coil Resistance @ 20°C [70°F]	7.1 Ω	28.5 Ω				
PWM Range	200-3	300 Hz				
PWM Frequency (preferred)	25	0 Hz				
IP Rating (IEC 60529 DIN 40050-9)	IP67	IP67				
IP Rating (IEC 60529 DIN 40050-9) with mating connector	IP69K IP69K					
Operating Temperature		Consistent with Pump Limits: -40°C (-40°F) to 104°C (220°F)				

General information

Electric Proportional Controls (EPC) (continued)

The available Normally Closed Electric Proportional Controls for the Series 45 are shown below. The allowable Pressure Compensator (PC) and Load Sense (LS) pressure settings are provided for each frame in their respective sections.

	Electric Proportional Controls Options – Normally Closed			Frame		
Code	Description	L	K	J	F	E
АН	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Left			•	•	•
AL	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Left			•	•	•
AV	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Right			•	•	•
AK	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Right			•	•	•
ВН	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left			•	•	•
BL	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left			•	•	•
ВМ	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Right			•	•	•
ВК	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Right			•	•	•
EM	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC)	•	•			
EN	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC)	•	•			


Notes:

- 1) Left = E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial
- 2) Right = E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial
- 3) K/L Frame Controls are not rotation dependent

Electric Proportional Control Characteristic - Normally Open

When an electric current is sent to the normally open configuration control, the pump pressure increases proportional to an increase in current. When the load in the system changes, the pump will adjust its displacement to maintain the pressure demanded by the controlling current. This control is especially useful for fan-drives, due to the direct relationship between fan-speed and pump pressure.

Due to the nature of Electric Proportional Controls, the relationship between current and pump pressure is unique for each individual PC/LS pressure setting combination. The relationship between different PC settings and different LS settings on the Pressure vs. Current Characteristic curve are shown below. The hydraulic schematic for the Normally Open Electric Proportional control is shown below as well.

SAUER Series 45 Axial Piston C Technical Information Series 45 Axial Piston Open Circuit Pumps General information

Electric Proportional Controls (EPC) (continued)

Solenoid Data - Normally Open

Voltage	12V	24V	
Maximum Current	1500 mA	665 mA	
Inrush Current	1700 mA	800 mA	
Coil Resistance @ 20°C [70°F]	7.1 Ω	28.5 Ω	
PWM Range	200-3	300 Hz	
PWM Frequency (preferred)	25	0 Hz	
IP Rating (IEC 60529 DIN 40050-9)	IP67	IP67	
IP Rating (IEC 60529 DIN 40050-9) with mating connector	IP69K IP69K		
Operating Temperature	Consistent with Pump Limits: -40°C (-40°F) to 104°C (220°F)		

The available Normally Open Electric Proportional Controls for the Series 45 are shown below. The allowable Pressure Compensator (PC) and Load Sense (LS) pressure settings are provided for each frame in their respective sections. Note that for Electric Proportional Controls, the Load Sense setting describes the Low Pressure Standby value, not margin.

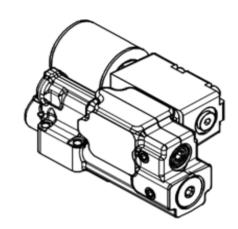
	Electric Proportional Controls Options – Normally Open			Frame		
Code	Description	L	K	J	F	E
AX	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Left			•	•	•
CL	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Left			•	•	•
AW	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Right			•	•	•
СК	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Right			•	•	•
ВХ	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Left			•	•	•
DL	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Left			•	•	•
BW	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Right			•	•	•
DK	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Right			•	•	•
EK	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC)	•	•			
EL	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC)	•	•			

Notes:

1) Left = E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial

2) Right = E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial

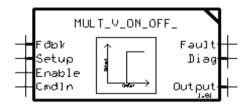
3) K/L Frame Controls are not rotation dependent


General information

Electric On-Off Controls

PLUS+1 Compliance

All Series 45 Electric controls have met and passed the Sauer-Danfoss PLUS+1 compliance standard testing, and as such, this Series 45 control is PLUS+1 compliant. PLUS+1 compliance blocks are available on the Sauer-Danfoss website, within the PLUS+1 Guide section.



For fan-drive systems, and systems with motors, use a minimum 15bar LS setting to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20bar LS setting is recommended as a starting point for all new applications.

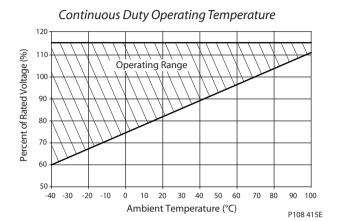
Electric On-Off Control Principle

The Electric On/Off Control consists of an On/Off solenoid integrated into a Remote Pressure Compensated control. This control allows the pump to be operated at either the Load Sense pressure setting when "On", or the Pressure Compensation pressure setting when "Off".

Electric On-Off Control Response/Recovery

S45 Electric On/Off Controls are available with two servo control orifice options, as well as without an orifice. The servo control orifice is used to enhance system stability, as well as dampen the pump reactiveness. A smaller orifice diameter will add dampening to the pump reactiveness, while a larger orifice will allow quicker pump reaction.

Module "G" Options for Electric On/Off Controls							
Frame	Frame "E" - 0.8mm Orifice "F" - 1.0mm Orifice "N" - No Orifice						
All Frames	•	•	•				


Specific Electric On/Off Control Response/Recovery times are shown for the available servo control orifice options in the control section within each specific frame section. These times represent the response from 75% of rated continuous pressure to 100% of rated continuous pressure, and recovery from 100% of rated continuous pressure to 75% of rated continuous pressure for N.C. configuration per SAE J745 (vice-versa for N.O). As the system pressure approaches the PC setting, the PC function will begin to assist in clipping pressure overshoots during the pump's response, and will decrease the response times of the pump to equal those of the PC response.

Electric On-Off Control Pressure vs. Flow Characteristic

The Electric On/Off Controls continuous duty operating temperature range is shown below; this guideline should be followed as well as the maximum current limitations. Note that rated voltage refers to either a 12V or 24V coil. Under high temperature conditions, current required to operate the solenoid increases.

General information

Electric On-Off Controls (continued)

Electric On-Off Control Characteristic – Normally Closed

The normally closed configuration On/Off control directs the pump to its Pressure Compensation pressure setting when no current is applied. When the required electric current is sent to the normally closed configuration control the pump pressure decreases to the Load Sense pressure setting. This control does not have Load Sense functionality, but rather acts as a Pressure Compensation control when not energized, or is directed to its low-pressure standby when energized. This control is especially useful for machine startups, as the pump can be directed to its Load Sense pressure setting during startup to reduce the load on engine starters.

Solenoid Data - Normally Closed

Voltage	12V	24V	
Maximum Current	1500 mA	665 mA	
Inrush Current	1700 mA	800 mA	
Coil Resistance @ 20°C [70°F]	7.1 Ω	28.5 Ω	
PWM Range	200-3	300 Hz	
PWM Frequency (preferred)	250	0 Hz	
IP Rating (IEC 60529 DIN 40050-9)	IP67	IP67	
IP Rating (IEC 60529 DIN 40050-9) with mating connector	IP69K IP69K		
Operating Temperature	Consistent with Pump Limits: -40°C (-40°F) to 104°C (220°F)		

General information

Electric On-Off Controls (continued)

The available Normally Closed Electric On/Off Controls for the Series 45 are shown below. The allowable Pressure Compensator (PC) and Load Sense (LS) pressure settings are provided for each frame in their respective sections.

	Electric Proportional Controls Options – Normally Closed			Frame				
Code	Description	L	L K J F			E		
AR	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) Left			•	•	•		
CR	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) Left			•	•	•		
AG	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) Right			•	•	•		
AY	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) Right			•	•	•		
BR	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left			•	•	•		
DR	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left			•	•	•		
BE	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Right			•	•	•		
BG	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Right			•	•	•		
EB	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC)	•	•					
EE	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC)	•	•					

Notes:

- 1) Left = E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial
- 2) Right = E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial
- 3) K/L Frame Controls are not rotation dependent

Electric On/Off Control Characteristic - Normally Open

The Normally Open configuration On/Off control directs the pump to its Load Sense pressure setting when no current is applied. When the required electric current (end current) is sent to the Normally Open configuration control, the pump pressure increases to the Pressure Compensation pressure setting. This control does not have Load Sense functionality, but rather acts as a Pressure Compensation control when energized, or is directed to its low-pressure standby when de-energized. This control is especially useful for machine startups, as the pump can be directed to its Load Sense pressure setting during startup to reduce the load on engine starters.

SAUER Series 45 Axial Piston C Technical Information Series 45 Axial Piston Open Circuit Pumps General information

Electric On-Off Controls (continued)

Solenoid Data - Normally Open

Voltage	12V	24V	
Maximum Current	1500 mA 665 mA		
Inrush Current	1700 mA 800 mA		
Coil Resistance @ 20°C [70°F]	7.1 Ω 28.5 Ω		
PWM Range	200-300 Hz		
PWM Frequency (preferred)	250 Hz		
IP Rating (IEC 60529 DIN 40050-9)	IP67	IP67	
IP Rating (IEC 60529 DIN 40050-9) with mating connector	IP69K IP69K		
Operating Temperature	Consistent with Pump Limits: -40°C (-40°F) to 104°C (220°F)		

The available Normally Open Electric On/Off Controls for the Series 45 Frame E are shown below, with the allowable Pressure Compensator (PC) pressure range provided for each control. All Electric On/Off Controls are available with the 10-40bar Load Sense (LS) setting range.

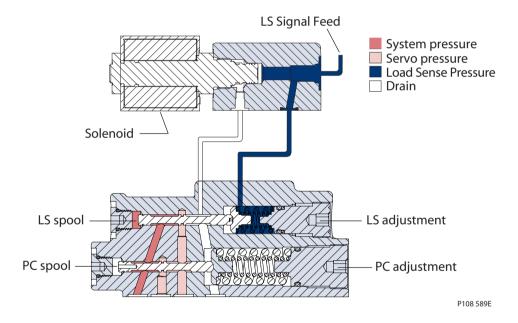
	Electric Proportional Controls Options – Normally Closed			Frame	Frame			
Code	Description	L K J F			E			
AN	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) Left			•	•	•		
CN	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) Left			•	•	•		
AF	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) Right			•	•	•		
AT	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) Right			•	•	•		
BN	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left			•	•	•		
DN	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left			•	•	•		
BF	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Right			•	•	•		
DF	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Right			•	•	•		
EA	Electric On/Off Pressure Control w/Pressure Comp. (NC,12VDC)	•	•					
EG	Electric On/Off Pressure Control w/Pressure Comp. (NC,24VDC)	•	•					

Notes:

1) Left = E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial

2) Right = E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial

3) K/L Frame Controls are not rotation dependent


General information

Electric dump valve PC/LS controls

The electric dump valve pressure-compensated/load sense control allows the pump to operate as a PC/LS type control under normal operating conditions. The solenoid dump valve overrides the PC control, allowing the pump to operate in a low-pressure standby mode. This function provides reduced horsepower and torque loss in certain situations. It may be particularly useful to reduce loads on a system during engine start.

When closed, the solenoid valve allows the control to act as a PC/LS control. When open, the solenoid valve allows flow from the incoming load sense pressure to dump to case. This reduces the pressure in the LS spring cavity, shifting the LS spool, and allows the pump to de-stroke to the low pressure standby condition. This control is for applications needing a PC/LS control with the ability to switch to low pressure standby electronically. The solenoid valve is only available in a normally closed configuration.

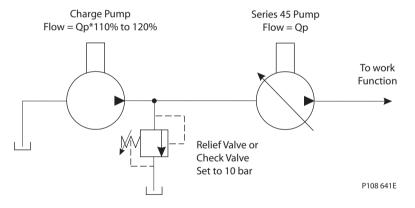
Electric Dump Control (frames E, F and J)

General information

Charge Pump Circuits

This section includes two general circuits for providing charge pressure to Series 45 pumps.

Example Circuit #1


Example Circuit #1 shows a generic open circuit charging layout.

In applications where the Series 45 pump does not have the required inlet pressure available, an external charge pump may be used to increase the inlet pressure to an acceptable level. Scenarios in which this may occur include a layout with the pump above the reservoir, high altitude conditions, etc.

For circuit type #1, follow these recommendations:

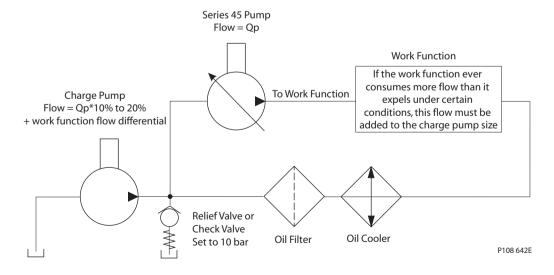
- Size the charge pump so that its flow is 10 to 20% greater than the Series 45 flow rate at worst case conditions
- Include a relief valve or check valve, as shown, between the charge pump and S45 pump with an initial pressure setting of up to 10 bar; if aeration at the inlet of the S45 pump is still present, increase the relief/cracking pressure up to 20 bar (maximum).

Generic open circuit

General information

Charge Pump Circuits (continued)

Example Circuit #2


Example Circuit #2 shows a semi-closed circuit charging layout.

In applications where the Series 45 pump does not have the required inlet pressure available, an external charge pump may be used to increase the inlet pressure to an acceptable level. Scenarios in which this may occur include a layout with the pump above the reservoir, high altitude conditions, etc.

For circuit type #2, follow these recommendations:

- Determine if the work function ever consumes more flow than it expels (for example: double acting or single acting cylinders). If so, determine the maximum flow differential in/out of the work function.
- Size the charge pump so that its flow is 10-20% of the Series 45 pump flow at worst case conditions, and increase this size by any work function flow differential which may occur.
- An inline oil cooler may be required for this type of circuit.
- Include an oil filter after the oil cooler; this ensures that any sediment in the oil
 cooler that may be dislodged due to vibration or any other reason is caught in the
 filter.
- Include a relief valve or check valve between the charge pump and S45 pump with an initial pressure setting of up to 10 bar; if aeration at the inlet of the S45 pump is still present, increase the relief/cracking pressure up to 20 bar (maximum).

Semi-closed circuit

General information

Operating parameters

Fluids

Ratings and performance data for Series 45 products are based on operating with premium hydraulic fluids containing oxidation, rust, and foam inhibitors. These include premium turbine oils, API CD engine oils per SAE J183, M2C33F or G automatic transmission fluids (ATF), Dexron II (ATF) meeting Allison C-3 or Caterpillar T0-2 requirements, and certain specialty agricultural tractor fluids. For more information on hydraulic fluid selection, see Sauer-Danfoss publications **520L0463** *Hydraulic Fluids and Lubricants, Technical Information*, and **520L0465** *Experience with Biodegradable Hydraulic Fluids, Technical Information*.

Viscosity

Maintain fluid viscosity within the recommended range for maximum efficiency and pump life.

Minimum Viscosity – This should only occur during brief occasions of maximum ambient temperature and severe duty cycle operation.

Maximum Viscosity – This should only occur at cold start. Pump performance will be reduced. Limit speeds until the system warms up.

Temperature

Maintain fluid temperature within the limits shown in the table. **Minimum temperature** relates to the physical properties of the component materials.

Fluid viscosity limits

Condition		mm²/s (cSt)	SUS
umin	continuous	9	58
v min.	intermittent	6.4	47
	continuous	110	500
ν max.	intermittent (cold start)	1000	4700

Temperature limits

Minimum (intermittent, cold start)	- 40° C [- 40° F]
Continuous	82° C [180° F]
Maximum	104° C [220° F]

Cold oil will not affect the durability of the pump components. However, it may affect the ability of the pump to provide flow and transmit power. **Maximum temperature** is based on material properties. Don't exceed it. Measure maximum temperature at the hottest point in the system. This is usually the case drain.

Ensure fluid temperature and viscosity limits are concurrently satisfied.

Inlet pressure

Maintain inlet pressure within the limits shown in the table. Refer to Inlet pressure vs. speed charts for each displacement.

Case pressure

Maintain case pressure within the limits shown in the table. The housing must always be filled with hydraulic fluid.

Inlet pressure limits

		0.8 bar absolute [6.7 in. Hg vac.]
	(continuous)	(at reduced maximum speed)
	Minimum	0.5 bar absolute [15.1 in. Hg vac.]
	(cold start)	

Case pressure limits

Maximum (continuous)	0.5 bar [7 psi] above inlet
Intermittent (cold start)	2 bar [29 psi] above inlet

Caution

Operating outside of inlet and case pressure limits will damage the pump. To minimize this risk, use full size inlet and case drain plumbing, and limit line lengths.

General information

Operating parameters (continued)

Pressure ratings

The specification tables in each section give maximum pressure ratings for each displacement. Not all displacements within a given frame operate under the same pressure limits. Definitions of the operating pressure limits appear below.

Continuous working pressure is the average, regularly occurring operating pressure. Operating at or below this pressure should yield satisfactory product life. For all applications, the load should move below this pressure. This corresponds to the maximum allowable PC setting.

Maximum (peak) working pressure is the highest intermittent pressure allowed. Maximum machine load should never exceed this pressure, and pressure overshoots should not exceed this pressure. *See Duty cycle and pump life below.

Speed ratings

The specification tables in each section give minimum, maximum, and rated speeds for each displacement. Not all displacements within a given frame operate under the same speed limits. Definitions of these speed limits appear below.

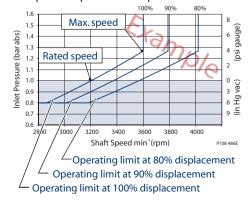
Rated speed is the fastest recommended operating speed at full displacement and 1 bar abs. [0 in Hg vac] inlet pressure. Operating at or below this speed should yield satisfactory product life.

Maximum speed is the highest recommended operating speed at full power conditions. Operating at or beyond maximum speed requires positive inlet pressure and/or a reduction of pump outlet flow. Refer to *Inlet pressure vs. speed* charts for each displacement.

Minimum speed is the lowest operating speed allowed. Operating below this speed will not yield satisfactory performance.

Duty cycle and pump life

Knowing the operating conditions of your application is the best way to ensure proper pump selection. With accurate duty cycle information, your Sauer-Danfoss representative can assist in calculating expected pump life.


Speed, flow, and inlet pressure

Inlet pressure vs. speed charts in each section show the relationship between speed,

flow, and inlet pressure for each displacement. Use these charts to ensure your application operates within the prescribed range.

The charts define the area of inlet pressures and speeds allowed for a given displacement. Operating at lower displacements allows greater speed or lower inlet pressure.

Sample inlet pressure vs. speed chart

General information

Design parameters

Installation

Series 45 pumps may be installed in any position. To optimize inlet conditions, install the pump at an elevation below the minimum reservoir fluid level. Design inlet plumbing to maintain inlet pressure within prescribed limits (see *Inlet pressure limits*, page 27)

Fill the pump housing and inlet line with clean fluid during installation. Connect the case drain line to the uppermost drain port (L1 or L2) to keep the housing full during operation.

To allow unrestricted flow to the reservoir, use a dedicated drain line. Connect it below the minimum reservoir fluid level and as far away from the reservoir outlet as possible. Use plumbing adequate to maintain case pressure within prescribed limits (see *Case pressure limits*, page 26).

Filtration

To prevent damage to the pump, including premature wear, fluid entering the pump inlet must be free of contaminants. Series 45 pumps require system filtration capable of maintaining fluid cleanliness at ISO 4406-1999 class 22/18/13 or better.

Sauer-Danfoss does not recommend suction line filtration. Suction line filtration can cause high inlet vacuum, which limits pump operating speed. Instead we recommend a 125 μ m (150 mesh) screen in the reservoir covering the pump inlet. This protects the pump from coarse particle ingestion.

Return line filtration is the preferred method for open circuit systems. Consider these factors when selecting a system filter:

- Cleanliness specifications
- Contaminant ingression rates
- Flow capacity
- Desired maintenance interval

Typically, a filter with a beta ratio of $\beta_{10} = 10$ is adequate. However, because each system is unique, only a thorough testing and evaluation program can fully validate the filtration system. For more information, see Sauer-Danfoss publication **520L0467** *Design Guidelines for Hydraulic Fluid Cleanliness*.

Reservoir

The reservoir provides clean fluid, dissipates heat, and removes entrained air from the hydraulic fluid. It allows for fluid volume changes associated with fluid expansion and cylinder differential volumes. Minimum reservoir capacity depends on the volume needed to perform these functions. Typically, a capacity of one to three times the pump flow (per minute) is satisfactory.

Locate the reservoir outlet (suction line) near the bottom, allowing clearance for settling foreign particles. Place the reservoir inlet (return lines) below the lowest expected fluid level, as far away from the outlet as possible.

General information

Design parameters (continued)

Fluid velocity

Choose piping sizes and configurations sufficient to maintain optimum fluid velocity, and minimize pressure drops. This reduces noise, pressure drops, and overheating. It maximizes system life and performance.

Recommended fluid velocities

System lines	6 to 9 m/sec [20 to 30 ft/sec]
Suction line	1 to 2 m/sec [4 to 6 ft/sec]
Case drain	3 to 5 m/sec [10 to 15 ft/sec]

Typical guidelines; obey all pressure ratings.

Velocity equations

SI units

Q = flow (I/min)A = area (mm²)

Velocity =
$$\frac{16.67 \cdot Q}{A}$$
 (m/sec)

US units

Q = flow (US gal/min)

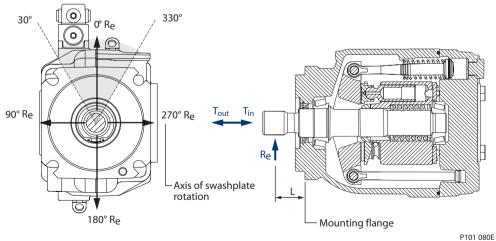
A = area (in²)

Velocity =
$$\frac{0.321 \cdot Q}{A}$$
 (ft/sec

Shaft loads

Series 45 pumps have tapered roller bearings capable of accepting external radial and thrust (axial) loads. The external radial shaft load limits are a function of the load position, orientation, and the operating conditions of the pump.

The maximum allowable radial load (R_e) is based on the maximum external moment (M_e) and the distance (L) from the mounting flange to the load. Compute radial loads using the formula below. Tables in each section give maximum external moment (M_e) and thrust (axial) load (T_{in} , T_{out}) limits for each pump frame size and displacement.


Radial load formula

$$M_e = R_e \cdot L$$

L = Distance from mounting flange to point of load

M_e = Maximum external moment R_e = Maximum radial side load

Shaft load orientation

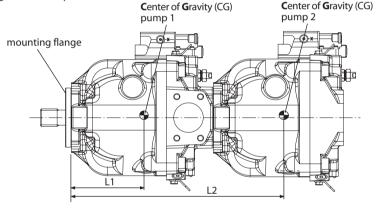
Bearing life

All shaft loads affect bearing life. In applications where external shaft loads can not be avoided, maximize bearing life by orientating the load between the 30° and 330° positions, as shown. Tapered input shafts or clamp-type couplings are recommended for applications with radial shaft loads.

General information

Design parameters (continued)

Mounting flange loads


Adding auxiliary pumps and/or subjecting pumps to high shock loads may overload the pump mounting flange. Tables in each section give allowable continuous and shock load moments for each frame size. Applications with loads outside allowable limits require additional pump support.

- **Shock load moment** (M_s) is the result of an instantaneous jolt to the system.
- **Continuous load moments** (M_c) are generated by the typical vibratory movement of the application.

Estimating overhung load moments

Use the equations below to estimate the overhung load moments for multiple pump mounting. See installation drawings in each section to find the distance from the mounting flange to the center of gravity for each frame size. Refer to the technical specifications in each section to find pump weight.

P101 081E

Shock load formula $M_s = G_s \cdot K \cdot (W_1 \cdot L_1 + W_2 \cdot L_2 + ... W_n \cdot L_n)$

Continuous load formula

 $M_c = G_c \cdot K \cdot (W_1 \cdot L_1 + W_2 \cdot L_2 + ... W_n \cdot L_n)$

SI units

Shock load moment (N•m) Continuous (vibratory) load moment (N·m)

Acceleration due to external

shock (G's) G_c = Acceleration due to continuous vibration (G's)

= Conversion factor = 0.00981

 $W_n = Mass of n^{th} pump (kg)$

 L_n = Distance from mounting flange to nth pump CG (mm)

US units

Shock load moment (lbf•in) Continuous (vibratory) load

moment (lbf•in)

Acceleration due to external shock (G's)

 Acceleration due to continuous vibration (G's)

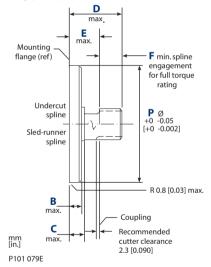
= Conversion factor = 1

 $W_n = Weight of n^{th} pump (lb)$

Distance from mounting flange

to nth pump CG (in)

General information


Design parameters (continued)

Auxiliary mounting pads

Auxiliary mounting pads are available for all radial ported Series 45 pumps. Since the auxiliary pad operates under case pressure, use an O-ring to seal the auxiliary pump mounting flange to the pad. Oil from the main pump case lubricates the drive coupling.

- All mounting pads meet SAE J744 Specifications.
- The combination of auxiliary shaft torque and main pump torque must not exceed the maximum pump input shaft rating. Tables in each section give input shaft torque ratings for each frame size.
- Applications subject to severe vibratory or shock loading may require additional support to prevent mounting flange damage. Tables in each section give allowable continuous and shock load moments for each frame size.
- The drawing and table below give mating pump dimensions for each size mount. Refer to installation drawings in each section for auxiliary mounting pad dimensions.

Mating pump specifications

Dimensions

	SAE A	SAE B	SAE C
Р	82.55	101.60	127.00
r	[3.250]	[4.000]	[5.000]
В	6.35	9.65	12.70
D	[0.250]	[0.380]	[0.500]
c	12.70	15.20	23.37
	[0.500]	[0.600]	[0.920]
D	58.20	53.10	55.60
U	[2.290]	[2.090]	[2.190]
Е	15.00	17.50	30.50
-	[0.590]	[0.690]	[1.200]
F	13.50	14.20	18.30
F	[0.530]	[0.560]	[0.720]

Input shaft torque ratings

Input shaft tables in each section give maximum torque ratings for available input shafts. Ensure that your application respects these limits.

Maximum torque ratings are based on shaft strength. Do not exceed them.

Coupling arrangements that are not oil-flooded provide a reduced torque rating. Contact your Sauer-Danfoss representative for proper torque ratings if your application involves non oil-flooded couplings.

Sauer-Danfoss recommends mating splines adhere to ANSI B92.1-Class 5. Sauer-Danfoss external splines are modified class 5 fillet root side fit. The external major diameter and circular tooth thickness dimensions are reduced to ensure a good clearance fit with the mating spline. Tables in each section give full spline dimensions and data.

Series 45 Axial Piston Open Circuit Pumps SAUER Series 45 Axiai Piston C DANFOSS Technical Information General information

Design parameters (continued)

Understanding and minimizing system noise

Charts in each section give sound levels for each frame size and displacement. Sound level data are collected at various operating speeds and pressures in a semi-anechoic chamber. Many factors contribute to the overall noise level of any application. Below is some information to help understand the nature of noise in fluid power systems, and some suggestions to help minimize it.

Noise is transmitted in fluid power systems in two ways: as fluid borne noise, and structure borne noise.

Fluid-borne noise (pressure ripple or pulsation) is created as pumping elements discharge oil into the pump outlet. It is affected by the compressibility of the oil, and the pump's ability to transition pumping elements from high to low pressure. Pulsations travel through the hydraulic lines at the speed of sound (about 1400 m/s [4600 ft/sec] in oil) until there is a change (such as an elbow) in the line. Thus, amplitude varies with overall line length and position.

Structure-borne noise is transmitted wherever the pump casing connects to the rest of the system. The way system components respond to excitation depends on their size, form, material, and mounting.

System lines and pump mounting can amplify pump noise. Follow these suggestions to help minimize noise in your application:

- Use flexible hoses.
- Limit system line length.
- If possible, optimize system line position to minimize noise.
- If you must use steel plumbing, clamp the lines.
- If you add additional support, use rubber mounts.
- Test for resonants in the operating range, if possible avoid them.

Understanding and minimizing system instability

Knowing the operating conditions and system setup of your application is the best way to ensure a stable system. All fan-drive circuits should use a choke orifice to ensure system stability. With accurate system information, your Sauer-Danfoss representative can assist you in the selection of a choke orifice.

General information

Sizing equations

Use these equations to help select the right pump size, displacement and power requirements for your application:

Based on SI units

Based on US units

Flow Output flow Q =
$$\frac{V_g \cdot n \cdot \eta_v}{1000}$$
 (I/min) Output flow Q = $\frac{V_g \cdot n \cdot \eta_v}{231}$ (US gal/min)

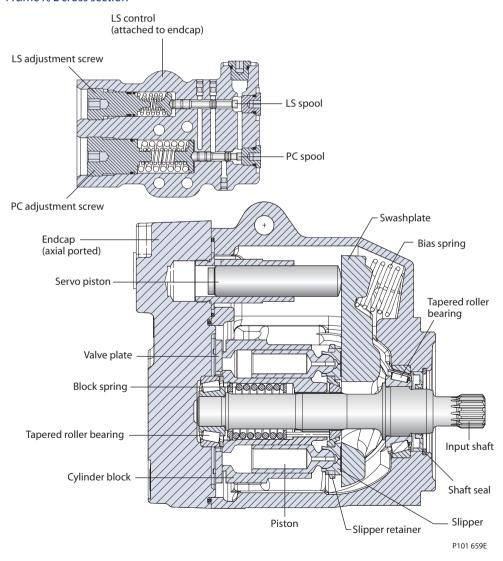
Power Input power P =
$$\frac{M \cdot n \cdot \pi}{30\,000} = \frac{Q \cdot \Delta p}{600 \cdot \eta_{\star}}$$
 (kW) Input power P = $\frac{M \cdot n \cdot \pi}{198\,000} = \frac{Q \cdot \Delta p}{1714 \cdot \eta_{\star}}$ (hp)

Variables SI units [US units]

V_α = Displacement per revolution cm³/rev [in³/rev]

 $p_0 = Outlet pressure$ bar [psi] p_i = Inlet pressure bar [psi] $\Delta p = p_0 - p_i$ (system pressure) bar [psi] n = Speedmin⁻¹ (rpm)

 $\eta_v = Volumetric efficiency$ η_m = Mechanical efficiency $\eta_{t} = \text{Overall efficiency } (\eta_{v} \cdot \eta_{m})$

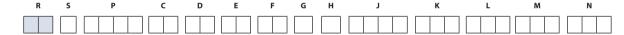

Frames L and K

Design

Series 45 Frame L and K pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bimetal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lip-seal protects against shaft leaks.

An adjustable one spool (PC only, not shown) or two spool (LS and remote PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston, adjusting swashplate angle to control pump output flow.

Frame K/L cross section



Frames L and K

Technical Specifications

			L Frame K Frame		ame	
		Unit	L25C	L30D	K38C	K45D
Maximum Displacement		cm³ [in³]	25 [1.53]	30 [1.83]	38 [2.32]	45 [2.75]
Working Input	Minimum		500	500	500	500
Speed	Continuous	min ⁻¹ (rpm)	3200	3200	2650	2650
	Maximum		3600	3600	2800	2800
Working	Continuous	har [nci]	260 [3770]	210 [3045]	260 [3770]	210 [3045]
Pressure	Maximum	bar [psi]	350 [5075]	300 [4350]	350 [5075]	300 [4350]
Flow at rated speed (theoretical)		l/min [US gal/min]	80 [21]	96 [25.4]	100.7 [26.6]	119.3 [31.5]
Input torque at maximum displacement (theoretical) at 49° C [120°F]		N•m/bar [lbf•in/1000 psi]	0.398 [243]	0.477 [291]	0.605 [369]	0.716 [438]
Mass moment of i		kg•m² [slug•ft²]	0.00169 [0.00125]	0.00161 [0.00119]	0.00184 [0.00135]	0.00203 [0.00150]
Weight	Axial ports	Leas File 1		19	[42]	
	Radial ports	kg [lb]		24	[53]	
External Shaft Loads	External moment (M _e)	N•m [lbf•in]	61 [540]	61 [540]	76 [673]	76 [673]
	Thrust in (T _{in}), out (T _{out})	N [lbf]	1000 [225]	1000 [225]	1200 [270]	1200 [270
Mounting flange Vibratory (continuous)		Nam [lhfain]	1005 [8895]			
	Shock (maximum)	N•m [lbf•in]	3550 [31420]			

Order code

Code description

Code	Description	
R	Product Frame, Variable Open Circuit Pump	
S	Rotation	
Р	Displacement	
С	Control Type	
D	Pressure Compensator Setting	
E	Load Sense Setting	
F	Not Used	
G	Choke Orifice	
Н	Gain Orifice	
J	Input Shaft/Auxiliary Mount/Endcap	
K	Shaft Seal/Front Mounting Flange/Housing Ports	
L	Displacement Limiter	
М	Special Hardware	
N	Special Features	

R	R Frame		L Frame		K Frame	
			025C	030D	038C	045D
KR		K Frame, variable displacement open circuit pump			•	•
LR		L Frame, variable displacement open circuit pump	•	•		

Frames L and K

Order code (continued	١
Olaci coac i	Continuca	

R	S	P	c	D	E	F	G	Н	J	K	L	М	N

			L Frame		K Frame	
S	Rotatio	on	025C	030D	038C	045D
L		Left Hand (counterclockwise)	•	•	•	•
R		Right Hand (clockwise)	•	•	•	•

P Displacement

Displac	cirient				
025C	025 cm³/rev [1.53 in³/rev]	•			
030D	030 cm³/rev [1.83 in³/rev]		•		
038C	038 cm³/rev [2.32 in³/rev]			•	
045D	045 cm³/rev [2.75 in³/rev]				•

C	C Control type				me K Fra	
Р	C	Pressure Compensator	025C	•	•	045D
R	P	Remote Pressure Compensator	•	•	•	•
L	В	Load Sensing/Pressure Comp. w/Bleed Orifice	•	•	•	•
L	S	Load Sensing/Pressure Compensator	•	•	•	•
E	Α	Electric On/Off w/Pressure Comp. (NO, 12VDC)	•	•	•	•
E	G	Electric On/Off w/Pressure Comp. (NO, 24VDC)	•	•	•	•
Е	В	Electric On/Off w/Pressure Comp. (NC, 12VDC)	•	•	•	•
Е	E	Electric On/Off w/Pressure Comp. (NC, 24VDC)	•	•	•	•
Е	K	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC)	•	•	•	•
E	L	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC)	•	•	•	•
EI	М	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC)	•	•	•	•
E	N	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC)	•	•	•	•

D *PC* setting (2 digit code, 10 bar increments)

Example	25 = 250 bar (3625 psi)				
10-21	100 to 210 bar [1450 to 3045 psi]	•	•	•	•
22-26	220 to 260 bar [3190 to 3771 psi]	•		•	

E Load sensing setting (2 digit code, 1 bar increments)

	Example	20 = 20 bar (290 psi)				
	12-36	12 to 36 bar [174 to 522 psi]	•	•	•	•
Ì	NN	Not applicable (pressure compensated only controls)	•	•	•	•

F Not used

Not applicable	•	•	•	•
----------------	---	---	---	---

G Pilot/Choke Orifice

None (standard)

H Gain Orifice

3	1.0 mm diameter	•	•	•	•
---	-----------------	---	---	---	---

Frames L and K

Order code (continued)

R	S	P	c	D	E	F	G	Н	J	К	L	М	N

J Input Shaft

C2	2 13 tooth, 16/32 pitch				
C3	15 tooth, 16/32 pitch				
K1	0.875 inch straight keyed				
K2	0.875 inch straight keyed (long)				
T1	1.0 inch Taper				

Auxiliary Mount/Endcap Style

Auxiliary Description	Endcap Style	Inlet Porting	Outlet Porting	Endcap Description	Code
None	Axial	O-Ring Boss	O-Ring Boss	Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) Control - Left Side	NF
None	Axial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.25 inch port 0.4375 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Left Side	NM
None	Axial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.25 inch port M10 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) Control - Left Side	NP
None	Radial	O-Ring Boss	O-Ring Boss	Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) Control - Right Side	NG
None	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side	NK
None	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) Control - Right Side	NR
Running Cover	Radial	O-Ring Boss	O-Ring Boss	Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) Control - Right Side	RG
Running Cover	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side	RK
SAE-A, 11 teeth	Radial	O-Ring Boss	O-Ring Boss	Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) Control - Right Side	TG
SAE-A, 9 teeth	Radial	O-Ring Boss	O-Ring Boss	Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) Control - Right Side	AG
SAE-A, 9 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side	AK
SAE-B, 13 teeth	Radial	O-Ring Boss	O-Ring Boss	Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) Control - Right Side	BG
SAE-B, 13 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side	ВК
SAE-B, 13 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads) Control - Right Side	BR
SAE-BB, 15 teeth	Radial	O-Ring Boss	O-Ring Boss	Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads) Control - Right Side	VG
SAE-BB, 15 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (1.5 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) Control - Right Side	VK

Series 45 Axial Piston Open Circuit Pumps

Frames L and K

Order code (continued)

R	S	P	C	D	E	F	G	Н	J	K	L	M	N

Input Shaft/Auxiliary Mount/Endcap

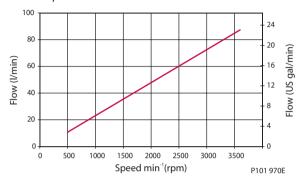
Available Combinations

	LF	rame	K Fr	ame
	025C	030D	038C	045D
C2AG*				
C2BG*				
C2NF*				
C2NG**				
C2NK**				
C2NM**				
C2NP**				
C2NR*				
C2RG*	•	•		
C2TG*	•	•		•
C3AG*	•	•		•
СЗАК**				•
C3BG*	•	•		•
C3NF*	•	•	•	•
C3NG**	•	•	•	•
C3NK**			•	•
C3RG*	•			

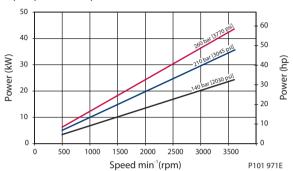
	LF	rame	KF	rame
	025C	030D	038C	045D
C3TG*				
C3VG*				•
K1AG*				
K1NF*				
K1NG**				•
K1RG*	•	•		
K2AG*	•	•	•	•
K2BG*	•			
K2NF*				
K2NG**				
K2NM**				
K2RG*				•
T1BG*				•
T1NF*				•
T1NG**				
T1RG*				

^{*} PLB or AAA Displacement limiter options only ** KNB Displacement limiter options only

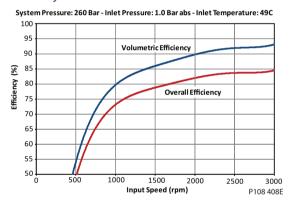
			L Fr	ame	K Fr	ame
K	Shaft s	seal	025C	030D	038C	045D
Α		Single (Viton)	•	•	•	•
K	Mounti	ing flange and housing port style				
6		SAE-B Flange 2-bolt/SAE O-ring boss ports	•	•	•	•
K	Not use	ed				
N		Not applicable	•	•	•	•
L	Displac	rement limiter				
AA	A	Adjustable, factory set at max angle	•		•	•
KN	IB	None	•	•	•	•
PL	В	None (plugged)	•	•	•	•
M	Special	hardware				
NN	IN	None	•	•	•	•
N	Special	features				
NN	IN	None	•	•	•	•

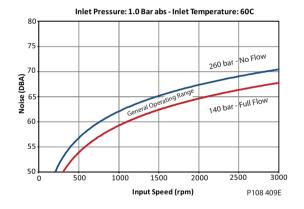


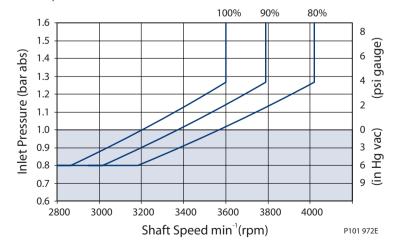
Frames L and K


Performance L25C

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].

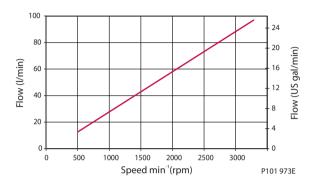

Flow vs. speed


Input power vs. speed

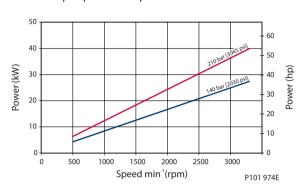

Efficiency

Noise

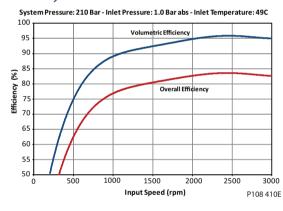
Inlet pressure vs. speed



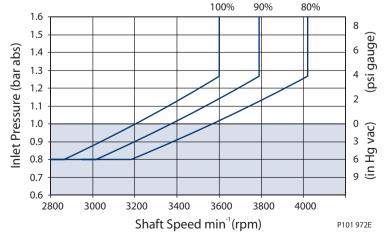
Frames L and K


Performance L30D

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].


Flow vs. speed

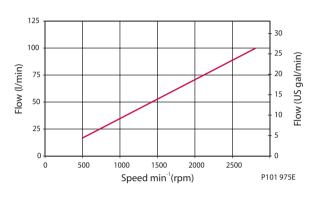
Input power vs. speed


Efficiency

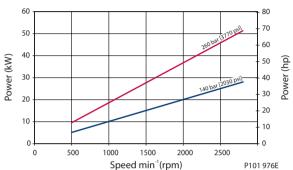
Noise

dB(A)	210 bar [3045 psi]				
GD(A)	1800 min ⁻¹ (rpm)	Rated Speed			
L30D	66	70			

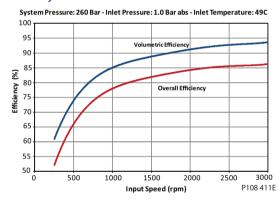
Inlet pressure vs. speed

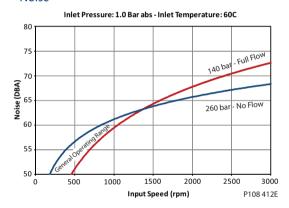


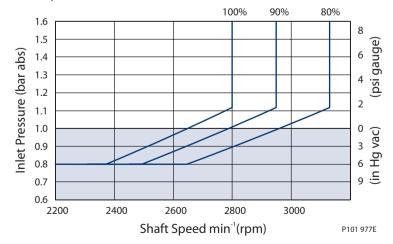
Frames L and K


Performance K38C

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].

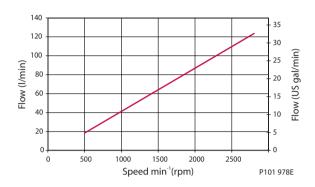

Flow vs. speed


Input power vs. speed

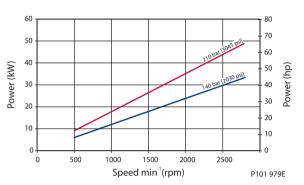

Efficiency

Noise

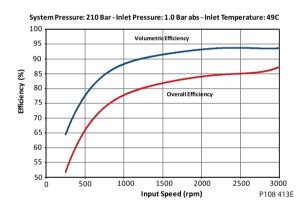
Inlet pressure vs. speed

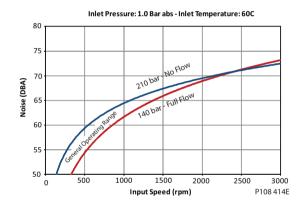


Frames L and K


Performance K45D

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].


Flow vs. speed


Input power vs. speed


Efficiency

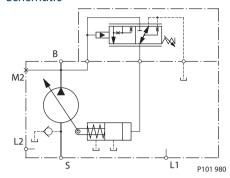
Noise

Inlet pressure vs. speed

Frames L and K

Hydrauilic Controls

Pressure Compensated Controls


Response/Recovery Times

(ms)	Response	Recovery
L25C	30	90
L30D	30	100
K38C	30	105
K45D	30	110

PC Setting Range

Model	bar	psi				
L25C	100–260	1450–3770				
L30D	100–210	1450–3045				
K38C	100–260	1450–3770				
K45D	100-210	1450-3045				

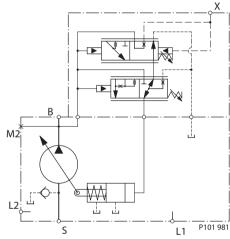
Schematic

Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge port

Remote Pressure Compensated Controls


Response/Recovery Times

(ms)	Response	Recovery
L25C	30	90
L30D	30	100
K38C	30	105
K45D	30	110

PC Setting Range

Model	bar	psi
L25C	100–260	1450–3770
L30D	100–210	1450-3045
K38C	100–260	1450-3770
K45D	100-210	1450-3045

Schematic

Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge port

X = Remote PC port

Frames L and K

Hydraulic Controls (continued)

Load Sensing/Pressure Compensated Controls

Response/Recovery Times

nesponse, necovery mines		
(ms)	Response	Recovery
L25C	30	70
L30D	30	70
K38C	30	80
K45D	30	80

PC Setting Range

Model	bar	psi
L25C	100-260	1450–3770
L30D	100–210	1450–3045
K38C	100–260	1450–3770
K45D	100–210	1450-3045

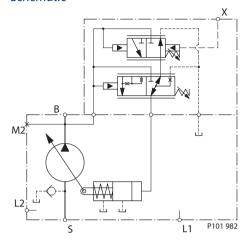
LS setting range

Model	bar	psi
All	12-40	174-580

Load Sensing Control with Bleed Orifice /Pressure Compensated

Response/Recovery Times

(ms)	Response	Recovery
L25C	30	70
L30D	30	70
K38C	30	80
K45D	30	80

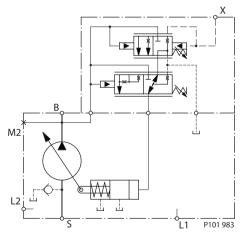

PC Setting Range

Model	bar	psi
L25C	100–260	1450–3770
L30D	100-210	1450–3045
K38C	100–260	1450–3770
K45D	100-210	1450-3045

LS setting range

Model	bar	psi
All	12-40	174-580

Schematic


Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

X = LS signal port

LB Schematic

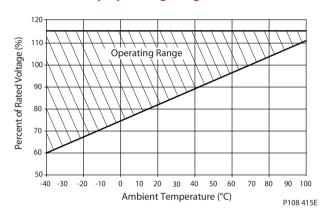
Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge port

X = LS signal port

Frames L and K


Electric Controls

Connectors

Description	Quantity	Ordering Number
Mating Connector	1	Deutsch® DT06-2S
Wedge Lock	1	Deutsch® W25
Socket Contact (16 and 18 AWG)	2	Deutsch® 0462-201-16141
Sauer-Danfoss mating connector kit	1	K29657

Continuous Duty Operating Range

Solenoid Data - Normally Closed

Voltage	12V	24V
Threshold Control [mA] (260/210 bar PC setting, oil temp X)	400/600	200/300
End Current [mA] (20 bar LS setting, oil temp X)	1200	600

Solenoid Data - Normally Open

Voltage	12V	24V
Threshold Control [mA] (20 bar LS setting, oil temp X)	0	0
End Current [mA] (260/210 bar PC setting, oil temp X)	1000/1100	500/550

Hysteresis

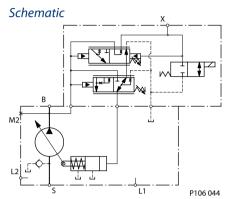
Frame	Hysteresis
L25C, K38C	Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure)
L30D, K45D	Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure)

Series 45 Axial Piston Open Circuit Pumps Technical Information Frames L and K

Electric Controls (continued)

Normally Closed Electric On/Off with Pressure Compensation Controls

Response/Recovery times*


(msec)	Response	Recovery
L25C	50	140
L30D	50	130
K38C	50	140
K45D	50	130

^{*} Without servo control orifice: response/recovery from solenoid energized/de-energized.

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

PC setting range

Frame	EB (12V)	EE (24V)
L25C	100-260 bar	100-260 bar
K38C	[1450-3370] psi	[1450-3370] psi
L30D	100-210 bar	100-210 bar
K45D	[1450-3045] psi	[1450-3045] psi

Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

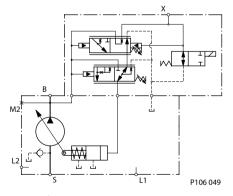
LS setting range

Model	bar	psi
All	12 - 40	[174 - 580]

Normally Open Electric On/Off with Pressure Compensation Controls

Response/Recovery times*

(msec)	Response	Recovery
L25C	50	140
L30D	50	130
K38C	50	140
K45D	50	130


^{*} Without servo control orifice: response/recovery from solenoid energized/de-energized.

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

PC settina ranae

r e setting range		
Frame	EA (12V)	EG (24V)
L25C	100-260 bar	100-260 bar
K38C	[1450-3370] psi	[1450-3370] psi
L30D	100-210 bar	100-210 bar
K45D	[1450-3045] psi	[1450-3045] psi

Schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

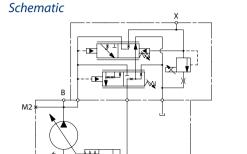
LS setting range

Model	bar	psi
All	12 - 40	[174 - 580]

Frames L and K

Electric Controls (continued)

Normally Closed Electric Proportional with Pressure Compensation Controls


Response/Recovery times

	0.8mm Orifice		Orifice 1.0mm Orifice	
(msec)	Response	Recovery	Response	Recovery
L25C	80	610	70	380
L30D	60	610	55	380
K38C	80	550	70	380
K45D	60	550	55	380

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

PC setting range

Frame	EM (12V)	EN (24V)
L25C	100-260 bar	100-260 bar
K38C	[1450-3370] psi	[1450-3370] psi
L30D	100-210 bar	100-210 bar
K45D	[1450-3045] psi	[1450-3045] psi

P108 660E

Legend

B = Outlet S = Inlet

L1, L2 = Case drain

M2 = System pressure gauge port

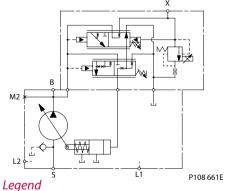
X = Load Sense Port

LS setting range

Model	bar	psi
All	12 - 40	[174 - 580]

Normally Open Electric Proportional with Pressure Compensation Controls

Response/Recovery times


	0.8mm Orifice		1.0mm Orifice	
(msec)	Response	Recovery	Response	Recovery
L25C	80	610	70	380
L30D	60	610	55	380
K38C	80	550	70	380
K45D	60	550	55	380

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

PC settina ranae

Frame	EK (12V)	EL (24V)
L25C	100-260 bar	100-260 bar
K38C	[1450-3370] psi	[1450-3370] psi
L30D	100-210 bar	100-210 bar
K45D	[1450-3045] psi	[1450-3045] psi

Schematic

B = Outlet

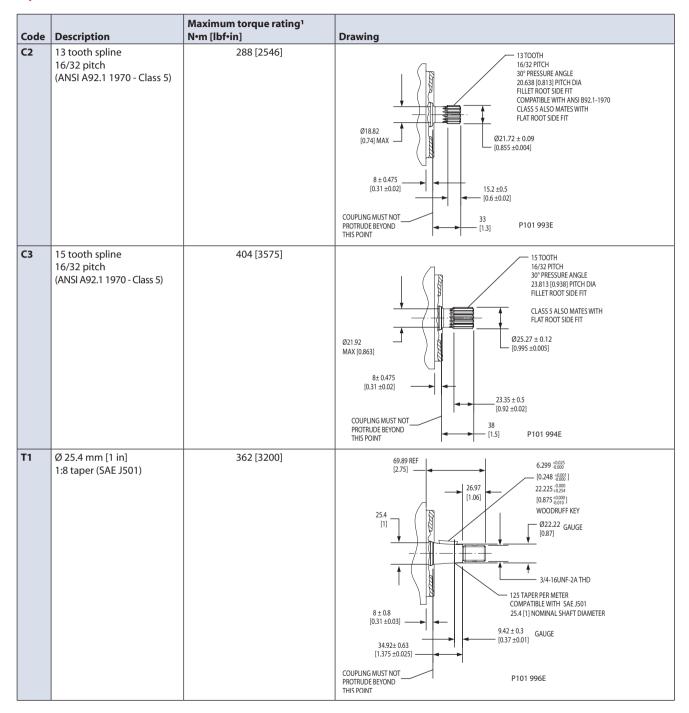
S = Inlet

L1, L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

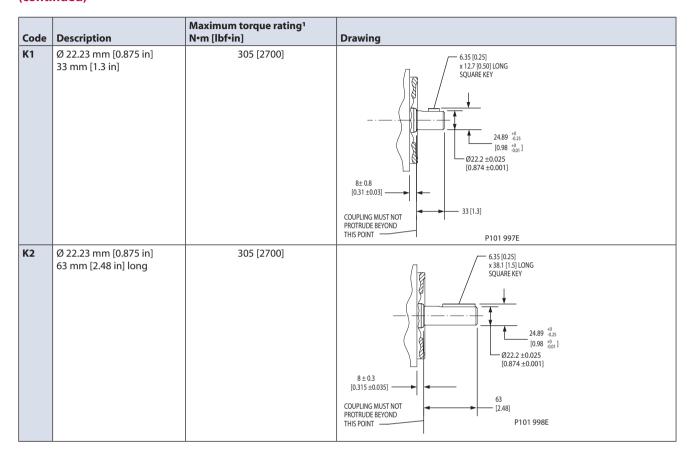
LS setting range


Model	bar	psi
All	12 - 40	[174 - 580]

Series 45 Axial Piston Open Circuit Pumps Series 45 Axial Piston (DANFOSS Technical Information

Frames L and K

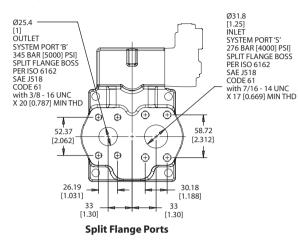
Input shafts

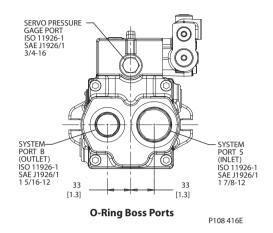


^{1.} See *Input shaft torque ratings*, page 31 for an explanation of maximum torque.

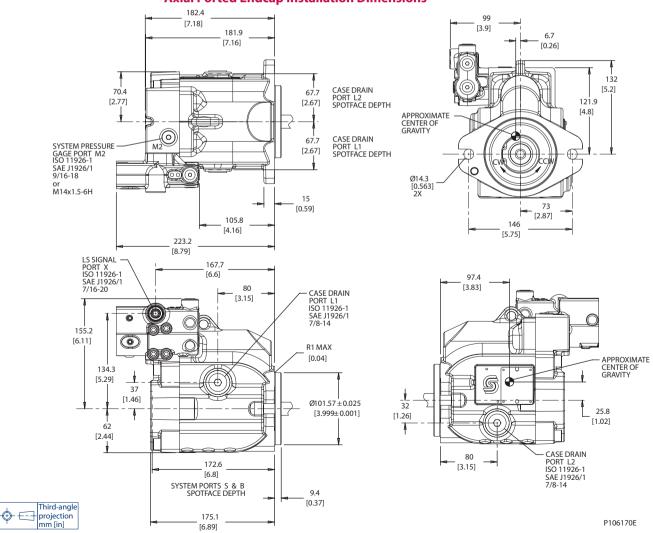
Frames L and K

input shafts (continued)


^{1.} See Input shaft torque ratings, page 31 for an explanation of maximum torque.

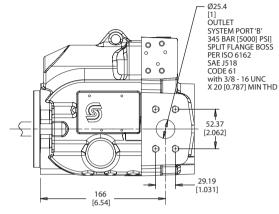


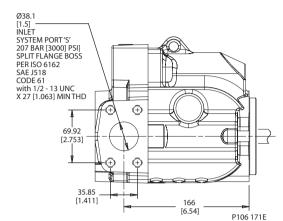
Frames L and K


Installation drawings

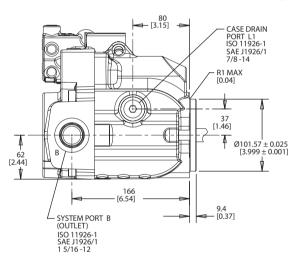
Axial Ported Endcap

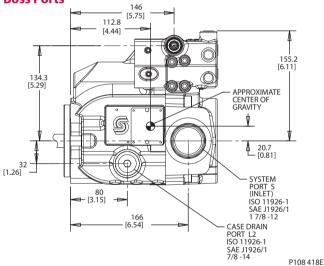
Axial Ported Endcap Installation Dimensions

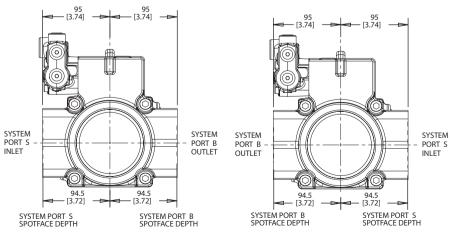




Frames L and K


Installation drawings (continued)

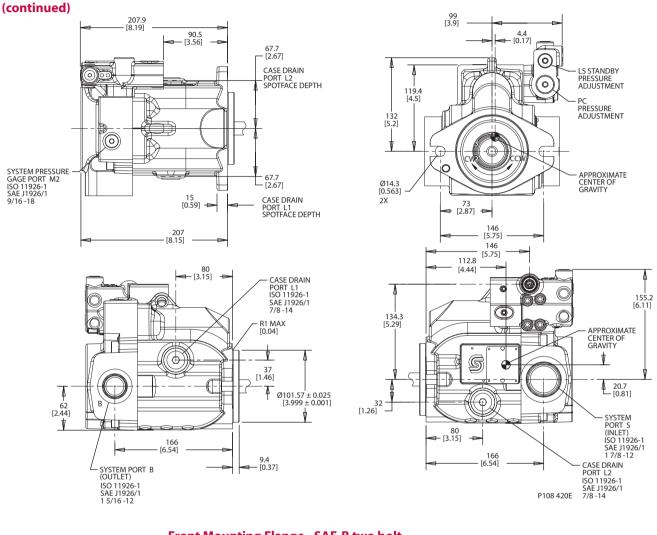

Radial Ported Endcap Split Flange Ports



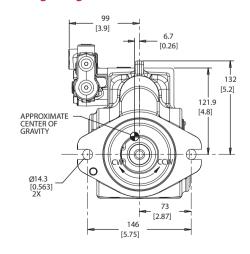
Radial Ported Endcap O-ring Boss Ports

Radial Ported Endcap Rear View

Right Hand Rotation (CW)


Left Hand Rotation (CCW)

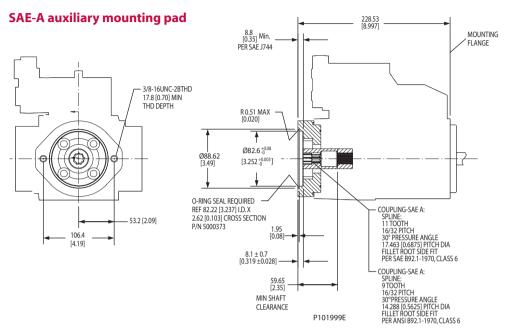
P108 419E



Frames L and K

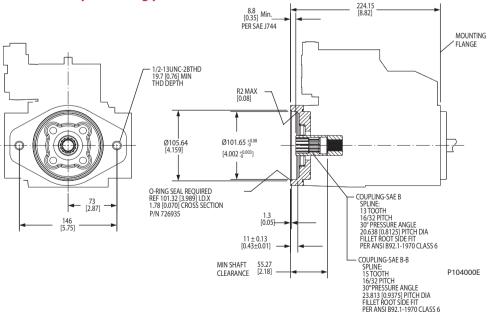
Installation drawings Radiall Ported Endcap Installation Dimensions

Front Mounting Flange - SAE-B two bolt



P108 421E

Frames L and K

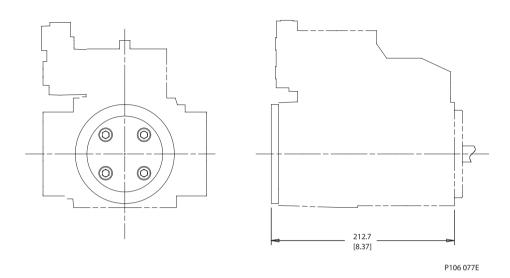

Installation drawings (continued)

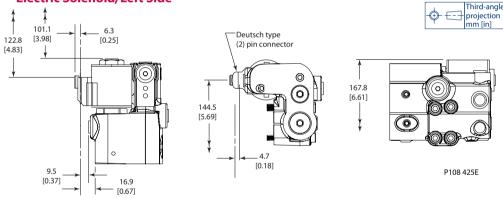
Specifications

Coupling	9-tooth	11-tooth
Spline minimum	12.6 mm [0.50 in]	13.5 mm [0.53 in]
engagement		
Maximum torque	107 N•m [950 lbf•in]	147 N•m [1300 lbf•in]

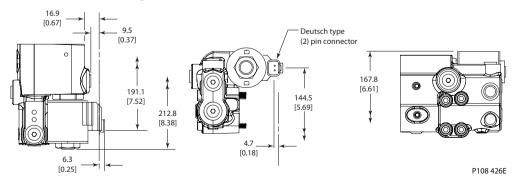
SAE-B auxiliary mounting pad

Specifications


Coupling	13-tooth	15-tooth
Spline minimum	13.2 mm [0.52 in]	16.1 mm [0.63 in]
engagement		
Maximum torque	171 N•m [1512 lbf•in]	171 N•m [1512 lbf•in]


Series 45 Axial Piston Open Circuit Pumps **Technical Information** Frames L and K

Installation drawings (continued)

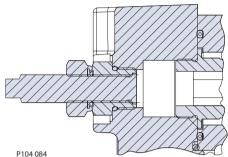

Auxiliary Mounting Pad - Running Cover

Electric Solenoid, Left Side

Electric Solenoid, Right Side

Third-angle

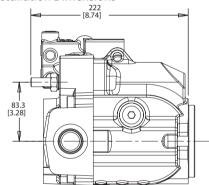
Frames L and K


Displacement limiter

L and K Frame open circuit pumps are available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement.

Setting range

L25C	0 to 25 cm ³ [0 to 1.53 in ³]
L30D	0 to 30 cm³ [0 to 1.83 in³]
K38C	0 to 38 cm³ [0 to 2.32 in³]
K45D	0 to 45 cm³ [0 to 2.75 in³]

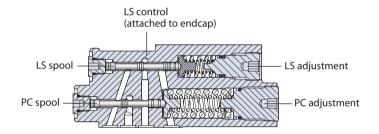

Cross-Section

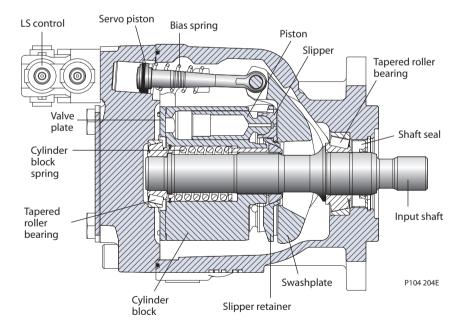
Displacement per turn

L25C	1.20 cm ³ /rev [0.07 in ³ /rev]
L30D	1.43 cm³/rev [0.09 in³/rev]
K38C	1.81 cm ³ /rev [0.11 in ³ /rev]
K45D	2.15 cm ³ /rev [0.13 in ³ /rev]

Installation Dimensions

P104 065E


Frame J


Design

Series 45 Frame J pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bi-metal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lip-seal protects against shaft leaks.

An adjustable one spool (PC only, not shown) or two spool (LS and PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston to control pump output flow.

Frame J cross section

Series 45 Axial Piston Open Circuit Pumps

Frame J

Technical Specifications

					J Frame		
		Unit	S45B	S51B	S60B	S65C	S75C
Maximum Displ	acement	cm³ [in³]	45 [2.75]	51 [3.11]	60 [3.66]	65 [3.97]	75 [4.58]
Working Input	Minimum		500	500	500	500	500
Speed	Continuous	min ⁻¹ (rpm)	2800	2700	2600	2500	2400
	Maximum		3360	3240	3120	3000	2880
Working	Continuous	bar [psi]	310 [4495]	310 [4495]	310 [4495]	260 [3770]	260 [3370]
Pressure	Maximum	bai [þsi]	400 [5800]	400 [5800]	400 [5800]	300 [4350]	300 [4350]
Flow at rated sp (theoretical)	eed	l/min [US gal/min]	126 [33.3]	138 [36.4]	156 [41.2]	163 [42.9]	180 [47.6]
	Input torque at maximum displacement (theoretical) at 49° C [120°F]		0.717 [437.4]	0.812 [495.7]	0.955 [583.2]	1.035 [631.8]	1.194 [729]
Mass moment of internal rotating		kg•m² [slug•ft²]	0.00455	0.00455	0.00455	0.00433	0.00433
Weight	Axial ports	- 5 -	[0.00330]	[0.00550]	23 [51]	[0.00313]	[0.00313]
	Radial ports	kg [lb]			27 [59]		
External Shaft Loads	External moment (M _e)	N•m [lbf•in]	226 [2000]	226 [2000]	226 [2000]	226 [2000]	226 [2000]
Thrust in (T_{in}) out (T_{out})		N [lbf]	2200 [495]	2200 [495]	2200 [495]	2200 [495]	2200 [495]
Mounting Vibratory (continuous)		N•m [lbf•in]		SAE-C: 1500	[13300], SAE-	·B: 735 [6600]
moments	Shock (maximum)	[ווויומון וווייומון	SAE-C: 5600 [49600], SAE-B: 2600 [23100]				

Series 45 Axial Piston Open Circuit Pumps

Frame J

Order code

Code description

Code	Description
R	Product Frame, Variable Open Circuit Pump
S	Rotation
Р	Displacement
С	Control Type
D	Pressure Compensator Setting
E	Load Sense Setting
F	Not Used
G	Choke Orifice
Н	Gain Orifice
J	Input Shaft/Auxiliary Mount/Endcap
K	Shaft Seal/Front Mounting Flange/Housing Ports
L	Displacement Limiter
М	Special Hardware
N	Special Features

R	Produc	t	J Frame							
			S45B	S51B	S60B	S65C	S75C			
JR		J Frame, variable displacement open circuit pump	•	•	•	•	•			

S Rotation

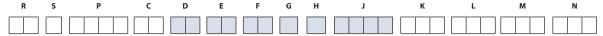
L	Left Hand (counterclockwise)	•	•	•	•	•
R	Right Hand (clockwise)	•	•	•	•	•

P Displacement

S45B	045 cm ³ /rev [2.75 in ³ /rev]	•				
S51B	051 cm ³ /rev [3.11 in ³ /rev]		•			
S60B	060 cm³/rev [3.66 in³/rev]			•		
S65C	065 cm ³ /rev [3.97 in ³ /rev]				•	
S75C	075 cm ³ /rev [4.58 in ³ /rev]					•

Frame J

Order code (continued)


R	S	P	C	D	E	F	G	Н	J	K	L	M	N

C	Control type			J Frame	2	
		S45B	S51B	S60B	S65C	S75C
PC	Pressure Compensator	•	٠	•	•	•
BC*	Pressure Compensator [>280 bar]	٠	٠	•		
RP	Remote Pressure Compensator	•	•	•	•	•
BP*	Remote Pressure Compensator [>280 bar]	•	•	•		
LS	Load Sensing/Pressure Comp.	•	•	•	•	•
BS*	Load Sensing/Pressure Comp. [>280 bar]	•	•	•		
LB	Load Sensing/Pressure Comp. with internal bleed orifice	•	•	•	•	•
BB*	Load Sensing/Pressure Comp. with internal bleed orifice [>280 bar]	•	•	•		
AN	Electric On/Off w/Pressure Comp. (NO, 12VDC) Left				•	•
CN	Electric On/Off w/Pressure Comp. (NO, 24VDC) Left					•
AR	Electric On/Off w/Pressure Comp. (NC, 12VDC) Left					•
CR	Electric On/Off w/Pressure Comp. (NC, 24VDC) Left					
AF	Electric On/Off w/Pressure Comp. (NO, 12VDC) Right					
AT	Electric On/Off w/Pressure Comp. (NO, 24VDC) Right					
AG	Electric On/Off w/Pressure Comp. (NC, 12VDC) Right					
AY	Electric On/Off w/Pressure Comp. (NC, 24VDC) Right					•
BN*	Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Left					
DN*	Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Left					
BR*	Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Left					
DR*	Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Left					
BF*	Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Right					
DF*	Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Right					
BE*	Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Right					
BG*	Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Right					
AX	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Left					•
CL	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Left					•
AH	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Left					•
AL	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Left					
AW	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Right					
СК	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Right					
AV	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Right					•
AK	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Right					•
вх*	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Left					
DL*	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Left					
BH*	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left					
BL*	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left					
BW*	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Right					
DK*	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Right					
BM*	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Right					
BK*	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Right					
FA*	Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Right					
FB*	Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Left					
FE*	Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 24VDC), Left					•

Left - E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial Right - E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial * Not available on 65cc and 75cc pumps

Order code (continued)

D PC settin	g (2 digit code, 10 bar increments)	J Frame								
		S45B	S51B	S60B	S65C	S75C				
Example	25 = 250 bar (3625 psi)									
10-26	100 to 260 bar [1450 to 3771 psi]	•	•	•	•	•				
27-28	270 to 280 bar [3916 to 4061 psi]	•	•	•						
29-31	290-310 bar [4206 to 4496 psi]	•	•							

E Load sensing setting (2 digit code, 1 bar increments)

Example	20 = 20 bar (290 psi)					
10-40	10 to 40 bar [175 to 580 psi]	•	•	•	•	•
NN	Not applicable (pressure compensated only controls)	•	•	•	•	•

F Not used

NN	Not applicable	•	•	•	•	•

G Pilot/Choke Orifice

N	None (standard)	•	•	•	•	•
Е	1.0 mm diameter	•	•	•	•	•
F	0.8 mm diameter	•	•	•	•	•

H Gain Orifice

3	1.0 mm diameter	•	•	•	•	•

J Input Shaft

C2	13 tooth, 16/32 pitch					
C3	15 tooth, 16/32 pitch					
K4	1.25 inch straight keyed					
S1	14 tooth 12/24 pitch					
то	1.25 Inch Taper					

Frame J

_						
ገ	rd	^		10	(continue	~
_	ıu	_	LUL		LUILLIIUE	

R S	P	C D	E	F	G H	J	K	L	M	N

Auxiliary Mount/Endcap Style

			1		
None	Axial	O-Ring Boss	O-Ring Boss	Inlet - SAE O-Ring boss port (1.875 inch threads) Outlet - SAE O-Ring boss port (1.3125 inch threads)	NH
None	Axial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	N9
None	Axial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter	NZ
None	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	NE
None	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	NX
None	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter, Large servo bore	NV
Running Cover	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	RF
Running Cover	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter	RF
SAE-A, 11 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	TE
SAE-A,11 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) with integral SAE "A" Aux. pad (0.375 inch threads)	TY
SAE-A,11 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) with displacement limiter	TF
SAE-A,11 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 62 Split Flange Port 4 Bolt (1 inch port M10 threads) with integral SAE "A" Aux. pad (0.375 inch threads)	TZ
SAE-A, 9 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	AE
SAE-A,9 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) with integral SAE "A" Aux. pad (0.375 inch threads))	AY
SAE-A,9 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads) with integral SAE "A" Aux. pad (0.375 inch threads))	AF
SAE-A, 9 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads)	AX
SAE-B, 13 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	BE
SAE-B, 13 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter	BV
SAE-B, 13 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads)	ВХ
SAE-BB, 15 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	VE
SAE-BB, 15 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter	VF
SAE-BB, 15 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads)	VX
SAE-BB, 15 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port M12 threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port M10 threads), Large servo bore	DX
SAE-C, 14 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	CE
SAE-C, 14 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads), w/ Disp. Limiter	CF
				3	_

SAUER Series 45 Axial Piston Control Technical Information Series 45 Axial Piston Open Circuit Pumps Frame J

Order code (continued)

R	S	P	C	D	E	F	G	Н	J	K	L	M	N

J Input Shaft/Auxiliary Mount/Endcap

Available Combinations

			J Frame		
	S45B	S51B	S60B	S65C	S75C
JC2AE*	•	•	•	•	•
JC2AY*		•	•	•	
JC2BE*	•	•	•		•
JC2BF**					
JC2CE*		•	•		
JC2N9*		•			
JC2NE*		•	•		
JC2NH*					
JC2NV**					
JC2NZ*					
JC2RE*			•		
JC2RF**					
JC2TE*		•	•		
JC2TF**			•		
JC2TY*			•		
JC2VE*	•	•	•	•	•
JC3AE*	•	•	•	•	•
JC3AF**	•	•	•	•	•
JC3AY*	•	•	•	•	•
JC3BE*	•	•	•	•	•
JC3BF**	•	•	•	•	•
JC3CE*	•	•	•	•	•
JC3N9*	•	•	•	•	•
JC3NE*	•	•	•	•	•
JC3NH*	•	•	•	•	•
JC3NV**	•	•	•	•	•
JC3NX*	•	•	•	•	•
JC3NZ*	•	•	•	•	•
JC3RE*	•	•	•	•	•
JC3RF**	•	•	•	•	•
JC3TE*	•	•	•	•	•
JC3TZ*		•	•	•	•
JC3VE*		•	•		
JK4AE*	•	•	•		
JK4AF**		•			•
JK4BE*		•	•		
JK4BF**		•	•		
JK4CE*		•	•		•
JK4CF**		•	•		
JK4N9*		•			
JK4NE*			•		•
JK4NH*					
JK4NV**					
	•	•	•	•	•
JK4NZ*	•	•	•	•	•
JK4RE*	•	•		•	•

		J Frame										
	S45B	S51B	S60B	S65C	S75C							
JK4RF**	•	•	•	•	•							
JK4TE*	•		•		•							
JK4VE*	•		•		•							
JS1AE*	•		•	•	•							
JS1AF**	•	•	•	•	•							
JS1AY*	•	•			•							
JS1BE*	•	•	•	•	•							
JS1BF**	•	•	•	•	•							
JS1CE*	•	•	•	•	•							
JS1CF**	•	•	•	•	•							
JS1DX*	•	•	•	•	•							
JS1N9*	•	•	•	•	•							
JS1NE*	•	•	•	•	•							
JS1NH*	•	•	•	•	•							
JS1NV**	•	•	•	•	•							
JS1NX*	•	•	•	•	•							
JS1NZ*	•	•	•	•	•							
JS1RE*	•	•		•	•							
JS1RF**	•	•	•	•	•							
JS1TE*	•	•		•	•							
JS1TF**	•	•	•	•	•							
JS1VE*	•	•	•	•	•							
JS1VF*	•	•	•	•	•							
JT0AE*	•	•	•	•	•							
JT0BE*	•		•	•	•							
JT0BF*	•		•	•	•							
JT0CE*	•		•	•	•							
JT0N9*	•		•	•	•							
JTONE*	•	•	•	•	•							
JTONH*	•	•	•	•	•							
JT0NV**	•	•	•	•	•							
JT0NZ*	•	•	•	•	•							
JTORE*	•	•	•	•	•							
JTOTE*	•	•	•	•	•							
JT0VE*	•	•	•	•	•							
JT0VF**	•	•	•	•	•							

^{*} NNN Displacement limiter options only ** FFF Displacement limiter options only

Frame J

Order code (continued	١
Oluci couc i	Continuca	,

R	S	P	C	D	E	F	G	н	J	K	L	M	N

					J Frame		
K	K Shaft seal		S45B	S61B	S60B	S65C	S75C
Α		Single (Viton)	•	•	•	•	•

K Mounting flange and housing port style

2	SAE-C Flange 4-bolt/SAE O-ring boss ports	•	•	•	•	•
8	SAE-B Flange 2-bolt/SAE O-ring boss ports	•	•	•	•	•
9	SAE-C Flange 2-bolt/SAE O-ring boss ports	•	•	•	•	•

K Not used

	AL . 19 L.1					
N	Not applicable	•	•	•	•	•

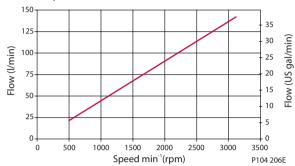
L Displacement limiter

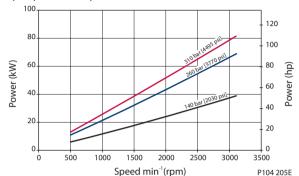
NNN	None	•	•	•	•	•
FFF	Adjustable, factory set at max angle	•	•	•	•	•

M Special hardware

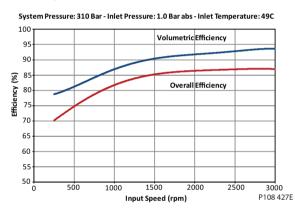
ווו	None	•	•	•	•	•	ı

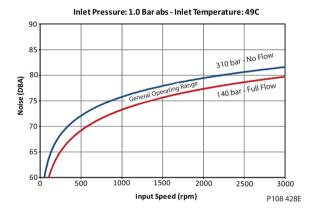
N Special features


ľ	NNN	None	•	•	•	•	•
---	-----	------	---	---	---	---	---


Performance J45B

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].


Flow vs. speed


Input power vs. speed

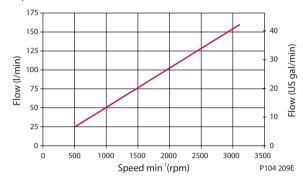
Efficiency

Noise

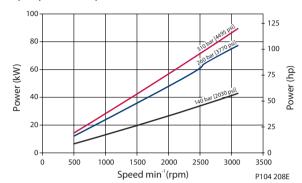
Inlet pressure vs. speed

The chart on the right shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life.

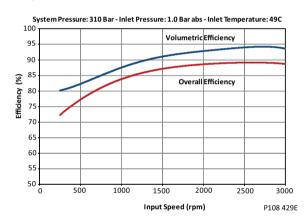
100% 90% 80% 1.6 1.5 (psi gauge) Inlet Pressure (bar abs) 1.4 1.3 1.2 1.1 1.0 0 (in Hg vac) 3 0.9 0.8 9 0.7 0.6 2400 2600 Shaft Speed min⁻¹(rpm) P104 207E

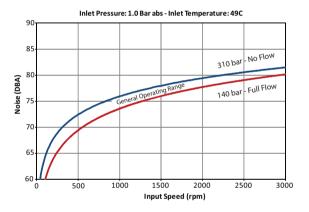


Frame J

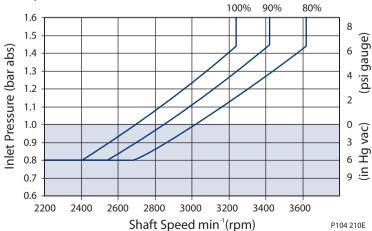

Performance J51B

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].


Flow vs. speed


Input power vs. speed

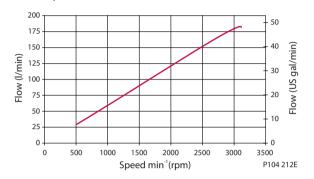
Efficiency

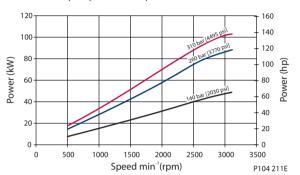


Noise

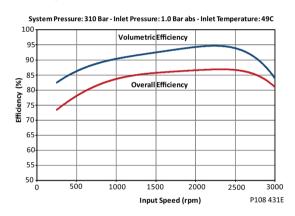
The chart on the right shows allowable inlet pressure and speed at various displacements.

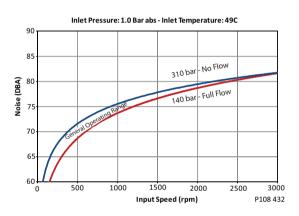
various displacements.
Greater speeds and lower inlet pressures are possible at reduced displacement.
Operating outside of acceptable limits reduces pump life.

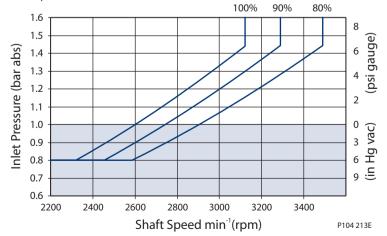



Performance J60B

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].

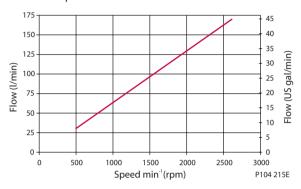

Flow vs. speed


Input power vs. speed

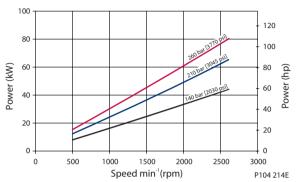

Efficiency

Noise

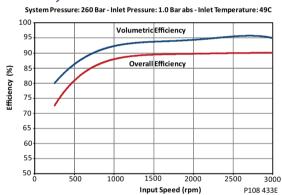
The chart on the right shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life.

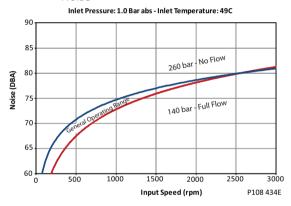


Frame J

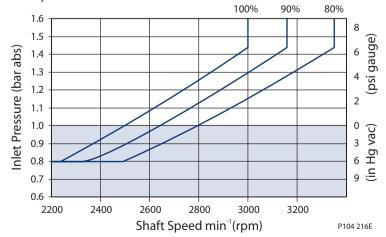

Performance J65C

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].


Flow vs. speed

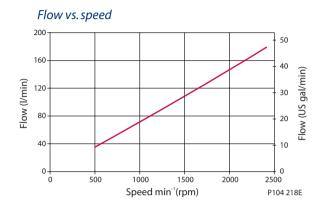

Input power vs. speed

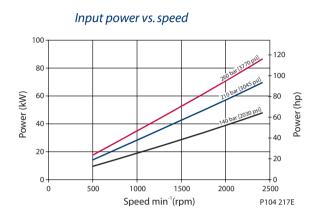
Efficiency

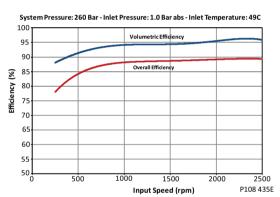


Noise

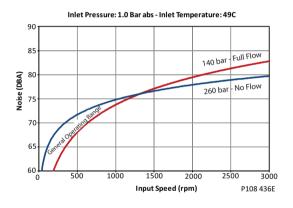
The chart on the right shows allowable inlet pressure and speed at various displacements.
Greater speeds and lower inlet pressures are possible at reduced displacement.
Operating outside of acceptable limits reduces

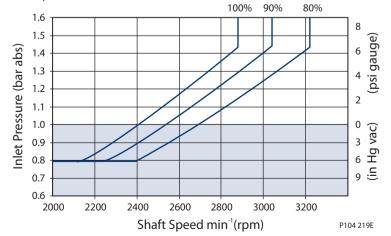

pump life.




Performance J75C

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].



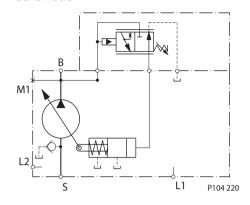

Efficiency

Noise

The chart on the right shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life.

Frame J

Pressure Compensated Controls


Response/Recovery Times*

(msec)	Response	Recovery
J45B	33	140
J51B	33	150
J60B	39	170
J65B	45	140
J75B	45	150

PC Setting range

r c setting range				
Model	PC	BC		
J45B	100-280 bar	290-310 bar		
	[1450-4060 psi]	[4205-4495 psi]		
J51B	100-280 bar	290-310 bar		
	[1450-4060 psi]	[4205-4495 psi]		
J60B	100-280 bar	290-310 bar		
	[1450-4060 psi]	[4205-4495 psi]		
J65C	100-260 bar	N/A		
	[1450-3770 bar]			
J75C	175C 100-260 bar			
	[1450-3770 bar]			

Schematic

Legend

B = Outlet S = Inlet L1, L2 = Case drain

M1* = System pressure gauge port

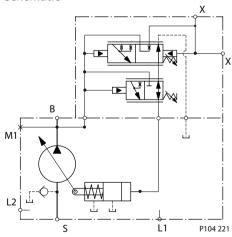
* M1 port is available on axially ported endcaps only

Remote Pressure Compensated Controls

Remote Pressure Compensated Controls

Response/Recovery Times*

(msec)	Response	Recovery
J45B	33	140
J51B	33	150
J60B	39	170
J65B	45	140
J75B	45	150


PC Setting Range

Model	RP	ВР
J45B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
J51B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
J60B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
J65C	100-260 bar	N/A
	[1450-3770 bar]	
J75C	100-260 bar	N/A
	[1450-3770 bar]	

LS Setting range

Model	bar	psi
All	10-40	145-580

Schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain X = Remote PC port

M1* = System pressure gauge port

* M1 port is available on axially ported endcaps only

Frame J

Load sensing/Pressure compensated Controls

Response/Recovery Times*

(msec)	Response	Recovery
J45B	28	111
J51B	30	125
J60B	33	140
J65B	43	101
J75B	45	140

PC control setting range

Code	LS	BS
J45B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
J51B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
J60B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
J65C,	100-260 bar	N/A
	[1450-3770 bar]	
J75C	100-260 bar	N/A
	[1450-3770 bar]	

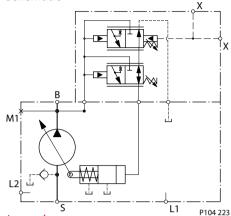
LS setting range

Model	bar	psi
All	10-40	145–580

Load sensing Control with Bleed Orifice/ Pressure Compensated

Response/Recovery Times*

(msec)	Response	Recovery		
J45B	28	111		
J51B	30	125		
J60B	33	140		
J65B	43	101		
J75B	45	140		

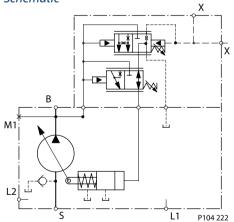

PC control setting range

C control scitting range				
Code	LB	BB		
J45B	100-280 bar [1450-4060 psi]	290-310 bar [4205-4495 psi]		
J51B	100-280 bar [1450-4060 psi]	290-310 bar [4205-4495 psi]		
J60B	100-280 bar [1450-4060 psi]	290-310 bar [4205-4495 psi]		
J65C,	100-260 bar [1450-3770 bar]	N/A		
J75C	100-260 bar [1450-3770 bar]	N/A		

LS setting range

Model	bar	psi
All	10-40	145–580

Schematic


Legend

B = Outlet S = Inlet L1,L2 = Case drain X = LS signal port

M1* = System pressure gauge port

* M1 port is available on axially ported endcaps only

Schematic

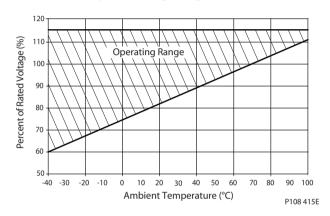
Legend

B = Outlet S = Inlet L1,L2 = Case drain X = LS signal port

M1* = System pressure gauge port

* M1 port is available on axially ported endcaps only

Frame J


Electric Controls

Connectors

Description	Quantity	Ordering Number
Mating Connector	1	Deutsch® DT06-2S
Wedge Lock	1	Deutsch® W25
Socket Contact (16 and 18 AWG)	2	Deutsch® 0462-201-16141
Sauer-Danfoss mating connector kit	1	K29657

Continuous Duty Operating Range

Solenoid Data - Normally Closed

Voltage	12V	24V
Threshold Control [mA] (310/260 bar PC setting, oil temp X)	200/400	100/200
End Current [mA] (20 bar LS setting, oil temp X)	1200	600

Solenoid Data - Normally Open

Voltage	12V	24V
Threshold Control [mA] (20 bar LS setting, oil temp X)	0	0
End Current [mA] (260/310 bar PC setting, oil temp X)	1000/1100	500/550

Hysteresis

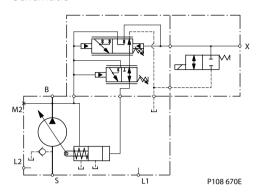
Frame	Hysteresis
J45B, J51B, J60B	Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure)
J65C, J75C	Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure)

Electric Controls (continued)

Normally Closed Electric On/Off with Pressure Compensation Controls

Response/Recovery times*

,			
(msec)	Response	Recovery	
J45B	33	140	
J51B	33	150	
J60B	39	170	
J65C	45	140	
J75C	45	150	


^{*} Without servo control orifice

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

PC setting range

Frame	AG, AR (12V)	BE, BR (12V)	AY, CR (24V)	BG, DR (24V)	
J45B	100 200 1	200 240	100 200	200 240 !	
J51B	100-280 bar [1450-4060] psi		100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	
J60B	[1430 4000] psi				
J65B	100-260 bar	Not Available	100-260 bar	Not Available	
J75B	[1450-3770] psi	NOT Available	[1450-3770] psi	NOT Available	

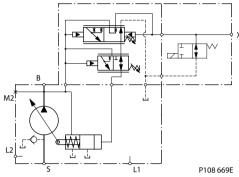
Frame J

Electric Controls (continued)

Normally Open Electric On/Off with Pressure Compensation Controls

Response/Recovery times*

(msec)	Response	Recovery
J45B	33	140
J51B	33	150
J60B	39	170
J65C	45	140
J75C	45	150


^{*} Without servo control orifice

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

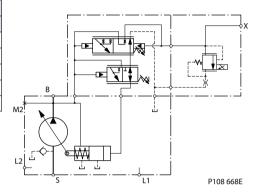
Frame	AF, AN (12V)	BF, BN (12V)	AT, CN (24V)	DF, DN (24V)
J45B	100 200	200 240	100 200	200 240
J51B	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi
J60B	[1430 4000] psi	[4205 4455] psi	[1430 4000] psi	[4205 4455] psi
J65B	100-260 bar	Not Available	100-260 bar	Not Available
J75B	[1450-3770] psi	NOT Available	[1450-3770] psi	NOT Available

Electric Controls (continued)

Normally Closed Electric Proportional with Pressure Compensation Controls

Response/Recovery times*

incop on se, incoording times				
	0.8mm Orifice		1.0mm Orifice	fice
(msec)	Response	Recovery	Response	Recovery
J45B	33	425	33	325
J51B	33	455	33	325
J60B	39	515	39	395
J65B	45	425	45	325
J75B	45	455	45	350


^{*} Without servo control orifice

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

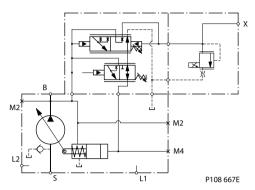
Frame	AH, AV (12V)	BH, BM (12V)	AK, AL (24V)	BK, BL (24V)
J45B	100 200	200 240	100 200	200 240
J51B	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi
J60B	[1430-4000] psi	[4203-4493] psi	[1430-4000] psi	[4203-4493] psi
J65B	100-260 bar	Not Available	100-260 bar	Not Available
J75B	[1450-3770] psi	NOL AVAIIADIE	[1450-3770] psi	NOT Available

Frame J

Electric Controls (continued)

Normally Open Electric Proportional with Pressure Compensation Controls

Response/Recovery times


	0.8mm Orifice		1.0mm Ori	fice
(msec)	Response	Recovery	Response	Recovery
J45B	33	425	33	325
J51B	33	455	33	325
J60B	39	515	39	395
J65B	45	425	45	325
J75B	45	455	45	350

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

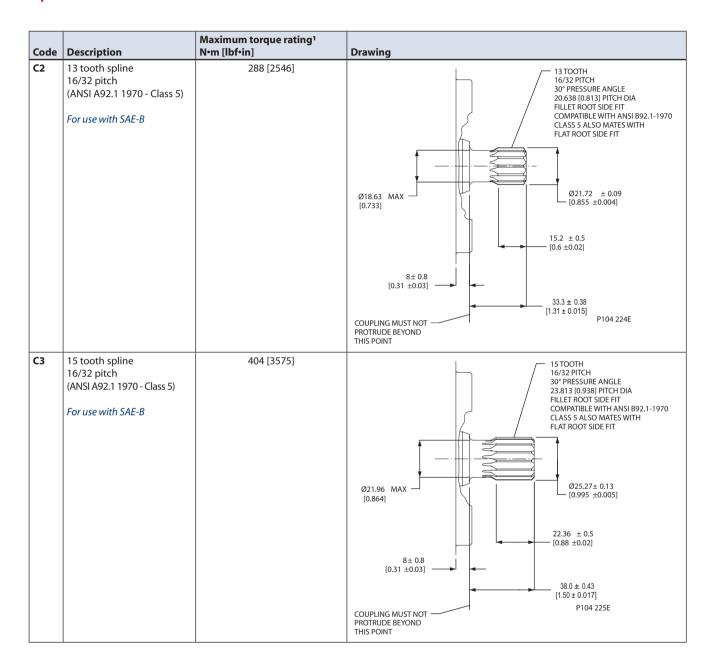
LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Schematic

Legend

B = Outlet S = Inlet L1, L2 = Case drain

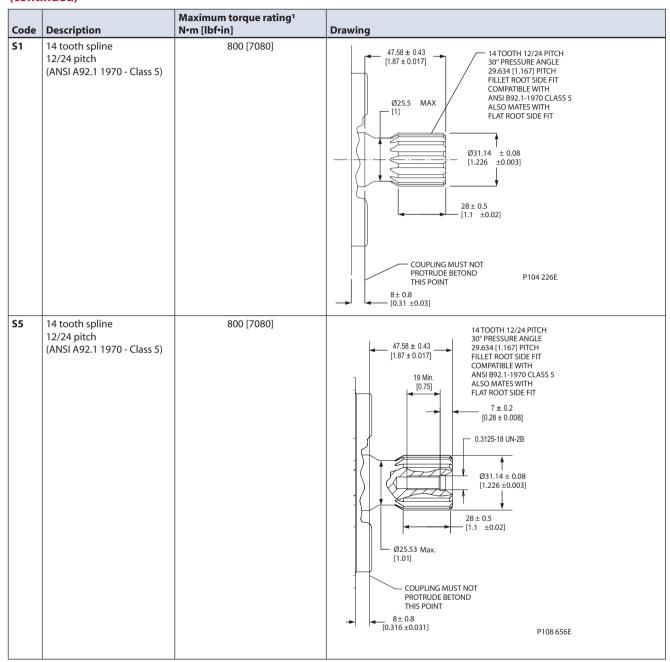

M2 = System pressure gauge port

X = Load Sense Port

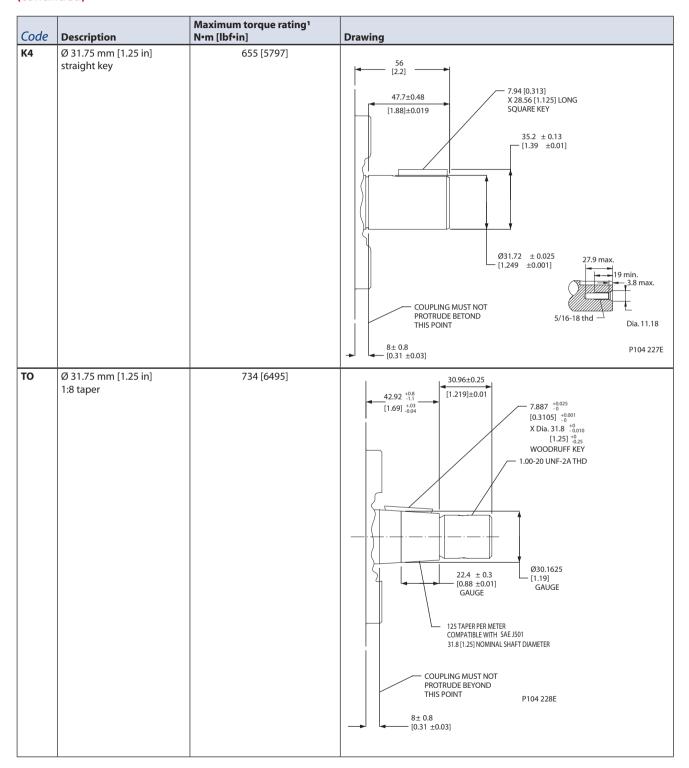
Frame	AW, AX (12V)	BW, BX (12V)	CK, CL (24V)	DK, DL (24V)
J45B	100 200	200 240 !	100 200	200 240
J51B	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi
J60B	[1430 4000] psi	[4203 4433] psi	[1430 4000] psi	[H203 H433] psi
J65B	100-260 bar	Not Available	100-260 bar	Not Available
J75B	[1450-3770] psi	NOT Available	[1450-3770] psi	NOT Available

SAUER Series 45 Axial Piston (Technical Information Series 45 Axial Piston Open Circuit Pumps Frame J

Input shafts



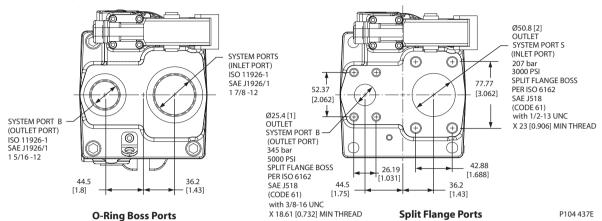
^{1.} See *Input shaft torque ratings*, page 31 for an explanation of maximum torque.


Frame J

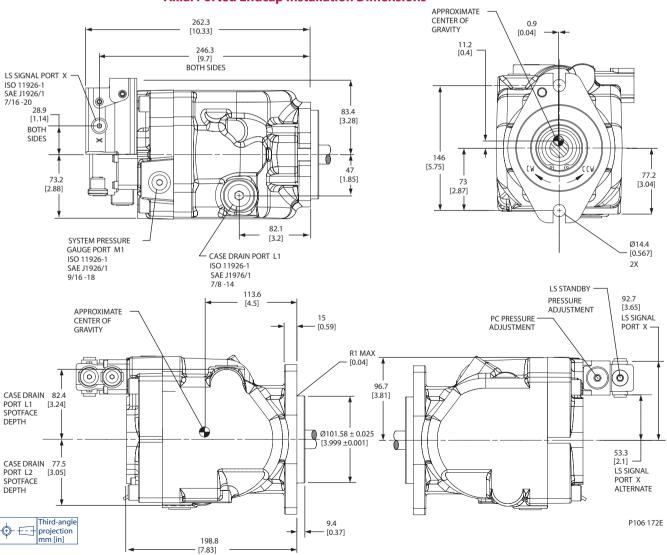
input shafts (continued)

^{1.} See Input shaft torque ratings, page 31 for an explanation of maximum torque.

input shafts (continued)

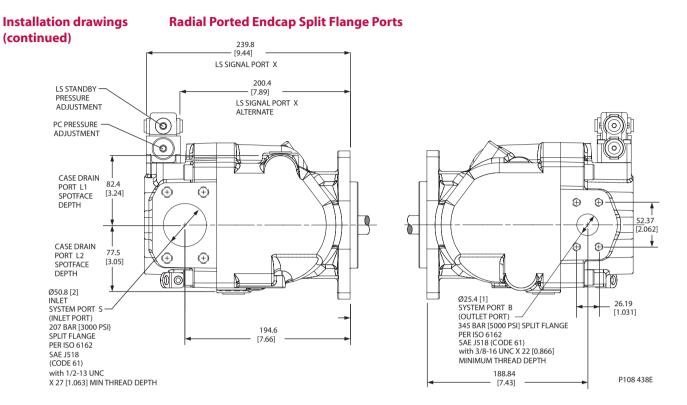


^{1.} See *Input shaft torque ratings*, page 31 for an explanation of maximum torque.

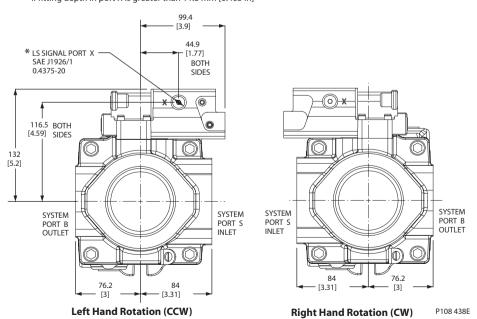


Frame J

Installation drawings Axial Ported Endcap



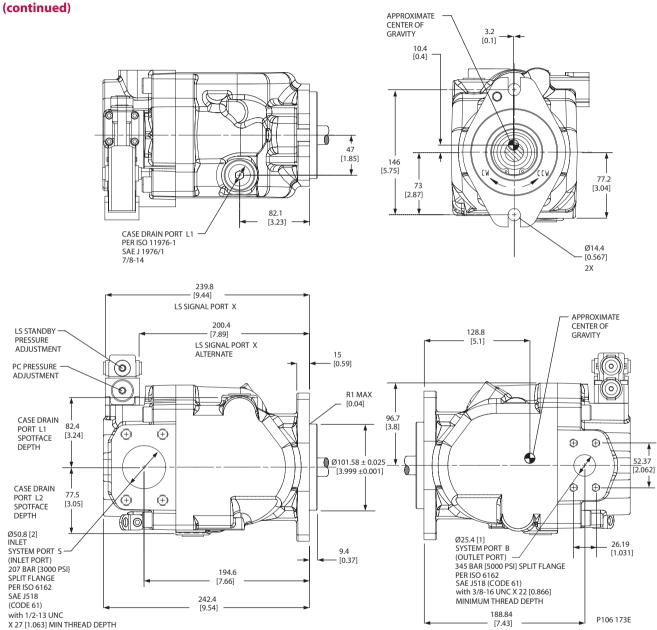
Axial Ported Endcap Installation Dimensions



Frame J

Radial Ported Endcap Rear View

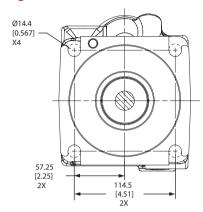
* Interference with internal components will occur if fitting depth in port X is greater than 11.8 mm [0.465 in]

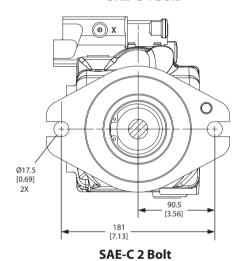


Frame J

Installation drawings (continued)

Radiall Ported Endcap Installation Dimensions




Frame J

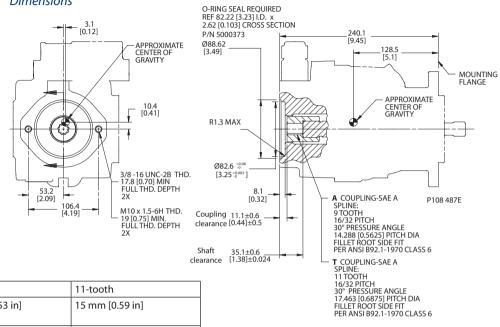
Installation drawings (continued)

Front Mounting Flange

SAE-C 4 Bolt

146 [5.75] 73 [2.87] 0714.4 [0.567] 2X

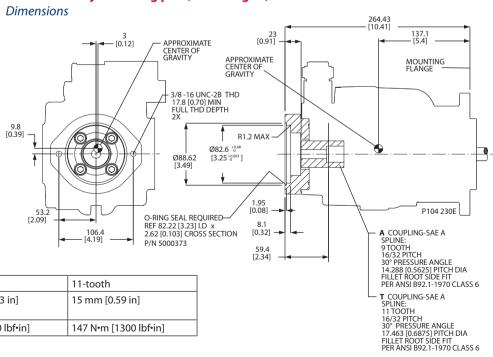
P108 440E



Frame J

Auxiliary mounting pads

SAE-A auxiliary mounting pad (integrated)



Specifications

Coupling	9-tooth	11-tooth
Spline minimum	13.5 mm [0.53 in]	15 mm [0.59 in]
engagement		
Maximum torque	107 N•m [950 lbf•in]	147 N•m [1300 lbf•in]

SAE-A auxiliary mounting pad (non-integral)

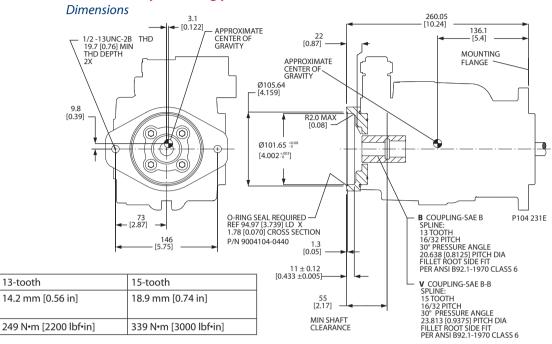
Specifications

Coupling	9-tooth	11-tooth
Spline minimum	13.5 mm [0.53 in]	15 mm [0.59 in]
engagement		
Maximum torque	107 N•m [950 lbf•in]	147 N•m [1300 lbf•in]

Specifications

Spline minimum

Maximum torque

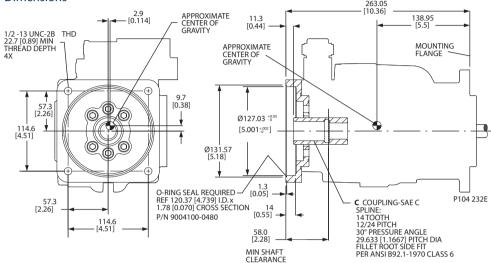

engagement

13-tooth

Coupling

Series 45 Axial Piston Open Circuit Pumps **Technical Information** Frame J

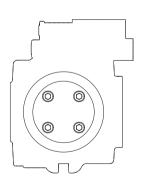
SAE-B auxiliary mounting pad

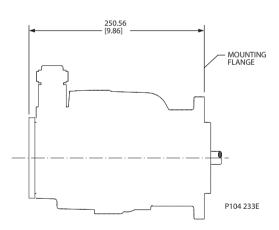


Frame J

Auxiliary mounting pads (continued)

SAE-C auxiliary mounting pad

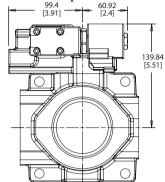

Dimensions

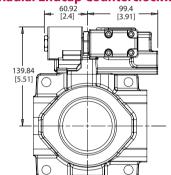


Specifications

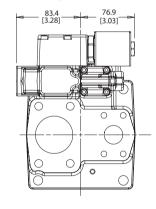
Coupling	14-tooth
Spline minimum	18.3 mm [0.72 in]
engagement	
Maximum torque	339 N·m [3000 lbf·in]

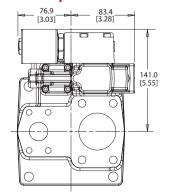
Running cover

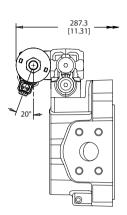


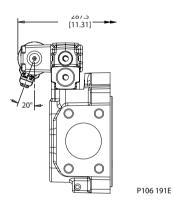


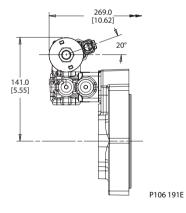
Installation drawings (continued)

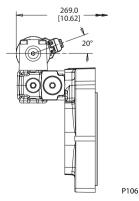

Radial Endcap Clockwise


Radial Endcap Counterclockwise


Axial Endcap Clockwise


Axial Endcap Counterclockwise



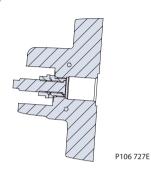


P108 441E

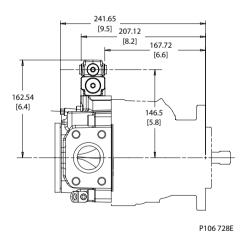
Frame J

Displacement limiter

J Frame open circuit pumps are available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement.


Settina ranae

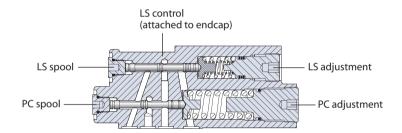
J45B	8.4 to 45 cm ³ [0.51 to 2.75 in ³]			
J51B	13.7 to 51 cm ³ [0.84 to 3.11 in ³]			
J60B	16.8 to 60 cm ³ [1.03 to 3.66 in ³]			
J65B	25.4 to 65 cm ³ [1.55 to 3.97 in ³]			
J75B	28.4 to 75 cm ³ [1.73 to 4.58 in ³]			

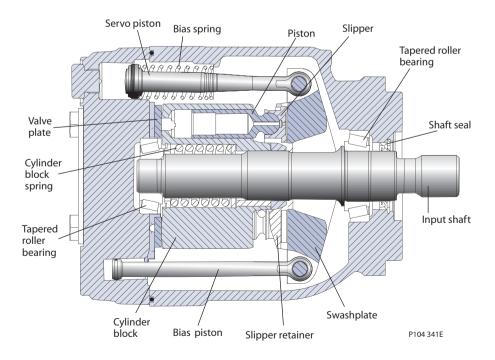

Displacement per turn

J45B	6.2 cm ³ /rev [0.38 in ³ /rev]
J51B	6.2 cm ³ /rev [0.38 in ³ /rev]
J60B	6.2 cm ³ /rev [0.38 in ³ /rev]
J65B	7.2 cm ³ /rev [0.44 in ³ /rev]
J75B	7.2 cm ³ /rev [0.44 in ³ /rev]

Displacement limiter cross-section

Displacement limiters are only available for endcap options V and W.


Frame F


Design

Series 45 Frame F pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bi-metal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lip-seal protects against shaft leaks.

An adjustable one spool (PC only, not shown) or two spool (LS and PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston to control pump output flow.

Frame F cross section

Frame F

Technical Specifications

			F Frame			
		Unit	074B	090C		
Maximum Displac	ement	cm³ [in³]	74 [4.52]	90 [5.49]		
Working Input	Minimum		500	500		
Speed	Continuous	min ⁻¹ (rpm)	2400	2200		
	Maximum		2800	2600		
Working	Continuous	har [nci]	310 [4495]	260 [3770]		
Pressure	Maximum	bar [psi]	400 [5800]	350 [5075]		
Flow at rated spee	ed (theoretical)	l/min [US gal/min]	178 [46.9]	198 [52.3]		
Input torque at m (theoretical) at 49	aximum displacement ° C [120°F]	N•m/bar [lbf•in/1000 psi]	1.178 [719.3]	1.433 [874.8]		
Mass moment of i		kg•m² [slug•ft²]	0.0063 [0.00465]	0.0065 [0.00479]		
Weight	Axial ports	lea [lb]	29 [64]			
	Radial ports	kg [lb]	32 [70]			
External Shaft	External moment (M _e)	N•m [lbf•in]	300 [2655]	300 [2655]		
Loads	Thrust in (T _{in}), out (T _{out})	N [lbf]	2900 [652]	2900 [652]		
Mounting flange	Vibratory (continuous)	Nima [llafiin]	3730 [33 100]			
load moments	Shock (maximum)	N•m [lbf•in]	13220 [117 100]			

Order code

Code description

Code	Description
R	Product Frame, Variable Open Circuit Pump
S	Rotation
P	Displacement
С	Control Type
D	Pressure Compensator Setting
E	Load Sense Setting
F	Not Used
G	Choke Orifice
Н	Gain Orifice
J	Input Shaft/Auxiliary Mount/Endcap
К	Shaft Seal/Front Mounting Flange/Housing Ports
L	Displacement Limiter
M	Special Hardware
N	Special Features

R	Produc	F Fr	ame	
			074B	090C
FR		F Frame, variable displacement open circuit pump	•	•

S Rotation

L	L Left Hand (counterclockwise)		•	•
R	Right Hand (clockwise)			
R	R Product		074B	090C
FR		F Frame, variable displacement open circuit pump	•	•

Series 45 Axial Piston Open Circuit Pumps SAUER Series 45 Axial Piston Control Technical Information Frame F

Order code	(continued)
------------	-------------

R	S	-	-	_	_	-	_	 J	 L	M	N

C Control type

		074B	090C
PC	Pressure Compensator	•	•
BC*	Pressure Compensator [>280 bar]	•	
RP	Remote Pressure Compensator	•	•
BP*	Remote Pressure Compensator [>280 bar]	•	
LS	Load Sensing/Pressure Comp.	•	•
BS*	Load Sensing/Pressure Comp. [>280 bar]	•	
LB	Load Sensing/Pressure Comp. with internal bleed orifice	•	•
BB*	Load Sensing/Pressure Comp. with internal bleed orifice [>280 bar]	•	
AN	Electric On/Off w/Pressure Comp. (NO, 12VDC) Left	•	•
CN	Electric On/Off w/Pressure Comp. (NO, 24VDC) Left	•	•
AR	Electric On/Off w/Pressure Comp. (NC, 12VDC) Left	•	•
CR	Electric On/Off w/Pressure Comp. (NC, 24VDC) Left	•	•
AF	Electric On/Off w/Pressure Comp. (NO, 12VDC) Right	•	•
AT	Electric On/Off w/Pressure Comp. (NO, 24VDC) Right	•	•
AG	Electric On/Off w/Pressure Comp. (NC, 12VDC) Right	•	•
AY	Electric On/Off w/Pressure Comp. (NC, 24VDC) Right	•	•
BN*	Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Left	•	
DN*	Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Left	•	
BR*	Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Left	•	
DR*	Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Left	•	
BF*	Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Right	•	
DF*	Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Right	•	
BE*	Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Right	•	
BG*	Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Right	•	
AX	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Left	•	•
CL	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Left		•
AH	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Left	•	•
AL	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Left	•	•
AW	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Right	•	•
CK	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Right	•	•
AV	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Right	•	•
AK	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Right	•	•
BX*	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Left	•	
DL*	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Left	•	
BH*	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left	•	
BL*	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left	•	
BW*	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Right	•	
DK*	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Right	•	
BM*	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Right	•	
BK*	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Right	•	_
FA*	Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Right	•	•
FB*	Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Left Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 24VDC), Left	•	· ·
FE"	Electric On/On Dump valve w/Pressure Comp. + Load Sense (NC, 24VDC), Leπ	•	•

Left - E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial Right - E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial * Not available on 90cc pumps

Frame F

Order code (continued)

R	S	P	C	D	E	F	G	Н	J	K	L	М	N

D PC setting (2 digit code, 10 bar increments)					
Example	25 = 250 bar (3625 psi)				
10-26	100 to 260 bar [1450 to 3771 psi]	•	•		
27-28	270 to 280 bar [3916 to 4061 psi]	•			
29-31	290-310 bar [4206 to 4496 psi]	•			

E Load sensing setting (2 digit code, 1 bar increments)

Example	20 = 20 bar (290 psi)					
10-40	10 to 34 bar [145 to 508 psi]	•	•	•	•	•
NN	Not applicable (pressure compensated only controls)	•	•	•	•	•

F Not used

NN	Not applicable	•	•	•	•	•
----	----------------	---	---	---	---	---

G Pilot/Choke Orifice

N None (standard)	•	•		•		1
-------------------	---	---	--	---	--	---

H Gain Orifice

1.0 mm diameter	•	•	•	•	•
-----------------	---	---	---	---	---

Order code	(continued)
------------	-------------

R S	Р	C	D	E	F	G	н	J	K	L	M	N

J Input Shaft

S1	14 tooth 12/24 pitch					
S2	17 tooth, 12/24 pitch					
K4	1.25 inch straight keyed					

Auxiliary Mount/Endcap Style

Auxiliary Description	Endcap Style	Inlet Porting	Outlet Porting	Endcap Description	Code
None	Axial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	N4
None	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	N2
Running Cover	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	R2
SAE-A, 9 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	A2
SAE-A, 11 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	T2
SAE-B, 13 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	B2
SAE-BB, 15 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	V2
SAE-C, 14 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2 inch port 0.5 inch threads) Outlet - Code 61 Split Flange Port 4 Bolt (1 inch port 0.375 inch threads)	C2

Input Shaft/Auxiliary Mount/Endcap

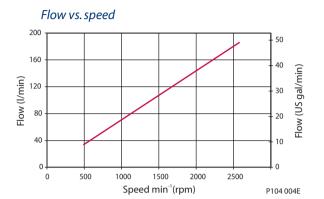
Available Combinations

	F Frame					
	074B	090C				
K4A2	•	•				
K4B2	•	•				
K4C2	•	•				
K4N2	•	•				
K4N4	•	•				
K4R2	•	•				
K4T2	•	•				
K4V2	•	•				
S1A2	•	•				
S1B2	•	•				
S1C2	•	•				
S1N2	•	•				
S1N4	•	•				
S1R2	•	•				
S1T2	•	•				
S1V2	•	•				

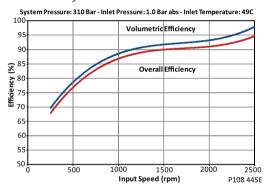
	F Frame				
	074B	090C			
S2A2	•	•			
S2B2	•	•			
S2C2	•	•			
S2N2	•	•			
S2N4	•	•			
S2R2	•	•			
S2T2	•	•			
S2V2	•	•			

Frame F

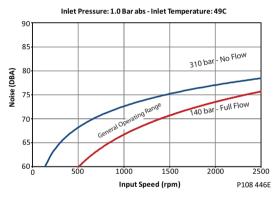
Order code (continued)


R	S	P	C	D	E	F	G	н	J	K	L	M	N

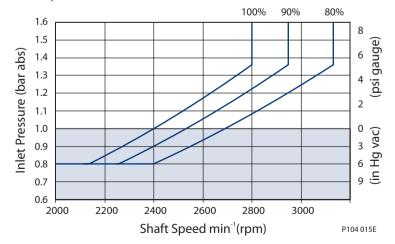
		F Fra	ame
K Shaf	t seal	074B	090C
Α	Single (Viton)	•	•
K Moun	ting flange and housing port style		
1	SAE-C Flange 4-bolt/SAE O-ring boss ports	•	•
3	SAE-B Flange 2-bolt/SAE O-ring boss ports	•	•
K Not u	sed		
N	Not applicable	•	•
_ Displo	acement limiter		
NNN	None (plugged)	•	•
AAA	•	•	
M Speci	al hardware		
NNN	None	•	•
N Speci	al features		
NNN	None	•	•


Performance F74B

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].



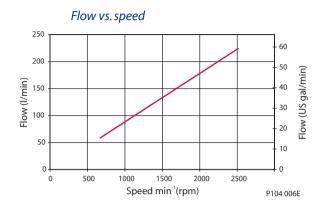
Efficiency

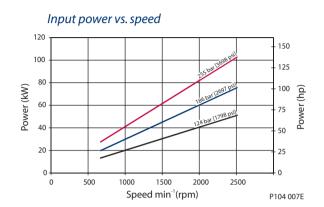


Noise

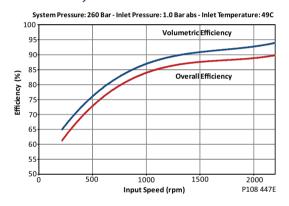
The chart on the right shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life.

Inlet pressure vs. speed

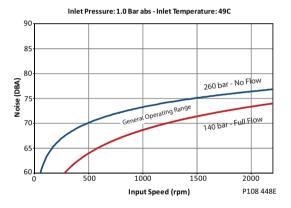




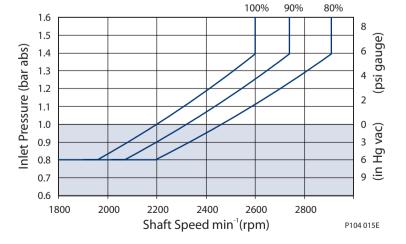
Frame F


Performance F90C

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].



Efficiency


Noise

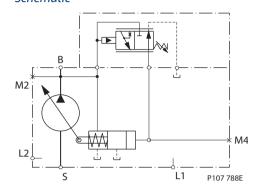
The chart on the right shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces

pump life.

Inlet pressure vs. speed

Hydraulic Controls

Pressure Compensated Controls


Response/recovery times

(msec)	Response	Recovery
F74B	35	120
F90C	35	135

PC setting range

Model	PC	ВС	
F74B	100-280 bar	290-310 bar	
	[1450-4060 psi]	[4205-4495 psi]	
F90C	100-260 bar	NI/A	
	[1450-3770 psi]	N/A	

Schematic

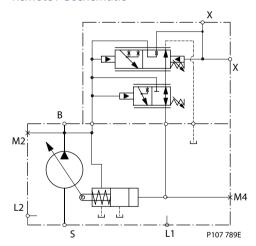
Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge port M4 = Servo pressure gauge port

Remote Pressure Compensated Controls

Response/recovery times


(msec)	Response	Recovery
F74B	35	120
F90C	35	135

PC setting range

Model	RP	ВР	
F74B	100-280 bar [1450-4060 psi]	290-310 bar [4205-4495 psi]	
F90C	100-260 bar [1450-3770 psi]	N/A	

An LS Setting of 20 is required for this control

Remote PC schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge portM4 = Servo pressure gauge port

X = Remote PC port

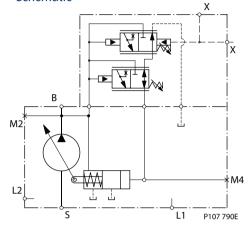
Frame F

Controls (continued)

Load Sensing/Pressure Compensated Controls

Response/recovery times*

(msec)	Response	Recovery
F74B	35	135
F90C	45	135


PC setting range

Model	bar	psi	
F74B	100-280 bar	290-310 bar	
	[1450-4060 psi]	[4205-4495 psi]	
F90C	100-260 bar	N/A	
	[1450-3770 psi]		

LS setting range

Model	bar	psi
All	10-30	145–435

Schematic

Legend

B = Outlet S = Inlet L1.L2 = Case drain

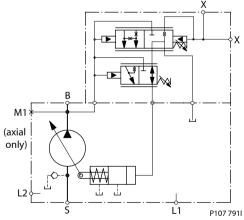
M2 = System pressure gauge portM4 = Servo pressure gauge port

X = LS signal port

Load Sensing Control with Bleed Orifice/Pressure Compensated

Response/recovery times*

(msec)	Response	Recovery
F74B	35	135
F90C	40	135


PC setting range

Model	LB	BB	
F74B	100-280 bar	290-310 bar	
	[1450-4060 psi]	[4205-4495 psi]	
F90C	100-260 bar	N/A	
	[1450-3770 psi]		

LS setting range

Model	bar	psi	
All	10–34	145–508	

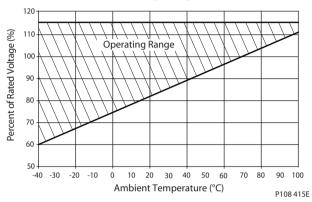
Schematic

Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge portM4 = Servo pressure gauge port

X = LS signal port


Electric Controls

Connectors

Description	Quantity	Ordering Number	
Mating Connector	1	Deutsch® DT06-2S	
Wedge Lock	1	Deutsch® W25	
Socket Contact (16 and 18 AWG)	2	Deutsch® 0462-201-16141	
Sauer-Danfoss mating connector kit	1	K29657	

Continuous Duty Operating Range

Solenoid Data - Normally Closed

Voltage	12V	24V
Threshold Control [mA] (310/260 bar PC setting, oil temp X)	200/400	100/200
End Current [mA] (20 bar LS setting, oil temp X)	1200	600

Solenoid Data - Normally Open

Voltage	12V	24V
Threshold Control [mA] (20 bar LS setting, oil temp X)	0	0
End Current [mA] (260/310 bar PC setting, oil temp X)	1000/1100	500/550

Hysteresis

Frame Hysteresis	
F74B	Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure)
F90C	Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure)

Frame F

Electric Controls (continued)

Normally Closed Electric On/Off with Pressure Compensation Controls

Response/Recovery times*

(msec)	Response	Recovery
F74B	35	120
F90C	35	135

^{*} Without servo control orifice

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

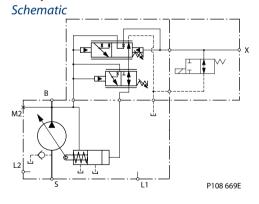
X = Load Sense Port

PC setting range

Frame	AG, AR (12V)	BE, BR (12V)	AY, CR (24V)	BG, DR (24V)
F74B	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi
F90C	100-260 bar [1450-3770] psi	Not Available	100-260 bar [1450-3770] psi	Not Available

Normally Open Electric On/Off with Pressure Compensation Controls

Response/Recovery times*


(msec)	Response	Recovery
F74B	35	120
F90C	35	135

^{*} Without servo control orifice

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	12 - 40	[174 - 580]

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

Frame	AF, AN (12V)	BF, BN (12V)	AT, CN (24V)	DF, DN (24V)
F74B	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi
F90C	100-260 bar [1450-3770] psi	Not Available	100-260 bar [1450-3770] psi	Not Available

Electric Controls (continued)

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

For fan-drive systems, and systems with motors,

than 15 bar to enhance system stability. As the LS

select an LS setting no less

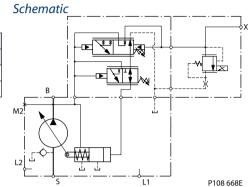
setting is reduced, the risk for system instability may

be increased. A 20 bar LS

setting is recommended as

a starting point for all new

applications.


Normally Closed Electric Proportional with Pressure Compensation Controls

Response/Recovery times

	0.8mm Orifice		1.0mm Orifice	
(msec)	Response	Recovery	Response	Recovery
F74B	35	365	35	280
F90C	35	410	35	315

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Legend

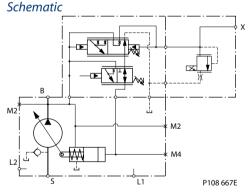
= Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

= Load Sense Port Χ

PC setting range

Frame	AH, AV (12V)	BH, BM (12V)	AK, AL (24V)	BK, BL (24V)
F74B	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi
F90C	100-260 bar [1450-3770] psi	Not Available	100-260 bar [1450-3770] psi	Not Available


Normally Open Electric Proportional with Pressure Compensation Controls

Response/Recovery times

	0.8mm Orifice		1.0mm Orifice	
(msec)	Response	Recovery	Response	Recovery
F74B	35	365	35	280
F90C	35	410	35	315

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Legend

= Outlet S = Inlet L1, L2 = Case drain

= System pressure gauge port M2

= Load Sense Port Χ

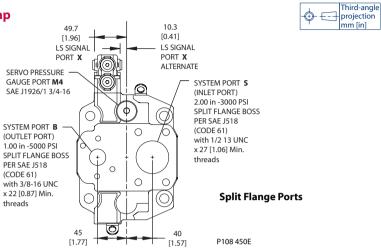
Frame	AW, AX (12V)	BW, BX (12V)	CK, CL (24V)	DK, DL (24V)
F74B	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi
F90C	100-260 bar [1450-3770] psi	Not Available	100-260 bar [1450-3770] psi	Not Available

Series 45 Axial Piston Open Circuit Pumps

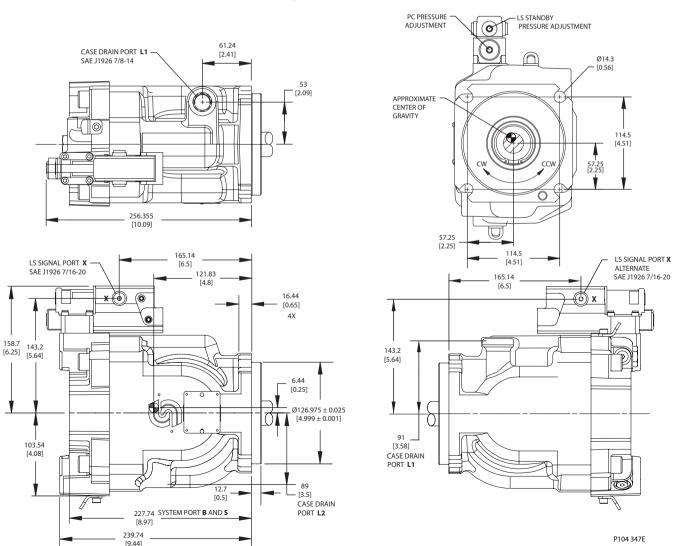
Frame F

Input shafts

Shaft data


Code	Description	Maximum torque rating ¹ N•m [lbf•in]	Drawing
K4	Ø 31.75 mm [1.25 in] Straight keyed	734 [6495]	MOUNTING FLANGE 7.938 +0.0 [0.31 ± 0.03] 8 ± 0.8 [0.3125 +0.0 [0.3020] SQ. KEY X 28.58 LG [1.125 ± 0.010] 27.9 max. [1.385 ± 0.005] 19 min. 38 max. 48 ± 0.6 [1.89 ± 0.024] FROTRUDE BEYOND THIS POINT P104 351E
S1	14 tooth spline 12/24 pitch (ANSI B92.1 1970 - Class 5)	800 [7080]	MOUNTING FLANGE 14 TEETH 12/24 PITCH 29.634 [1.167] PITCH Ø 30° PRESSURE ANGLE FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1-1970 CLASS 5. ALSO MATES WITH FLAT ROOT SIDE FIT 031.14 ± 0.08 [1.226 ± 0.003] 47.6 ± 0.06 [1.874 ± 0.024] PROTRUDE BEYOND THIS POINT P104 349E
S2	17 tooth spline 12/24 pitch (ANSI B92.1 1970 - Class 5)	1150 [10178]	## ANSI ## D.09 1.571 ± 0.09

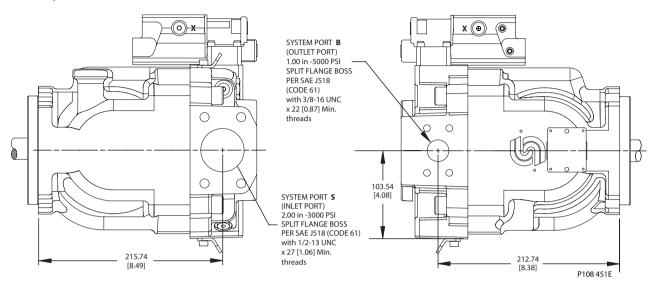
1. See Input shaft torque ratings, page 31 for an explaination of maximum torque.

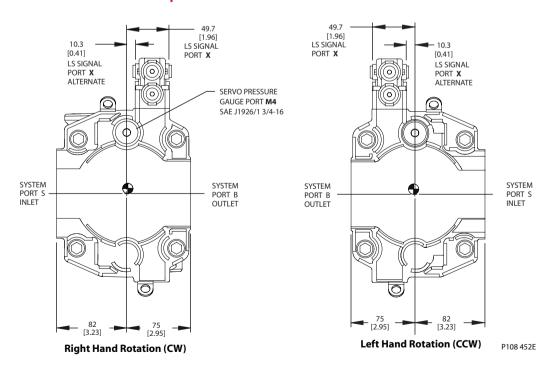


Installation drawings

Axial Ported Endcap

Axial Ported Endcap Installation Dimensions

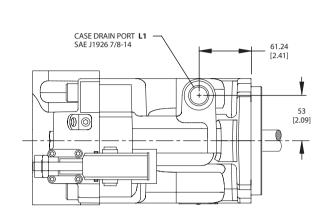


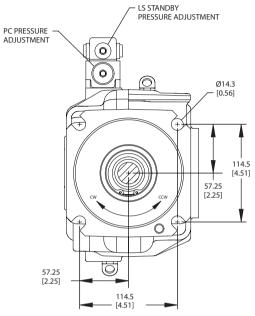

Frame F

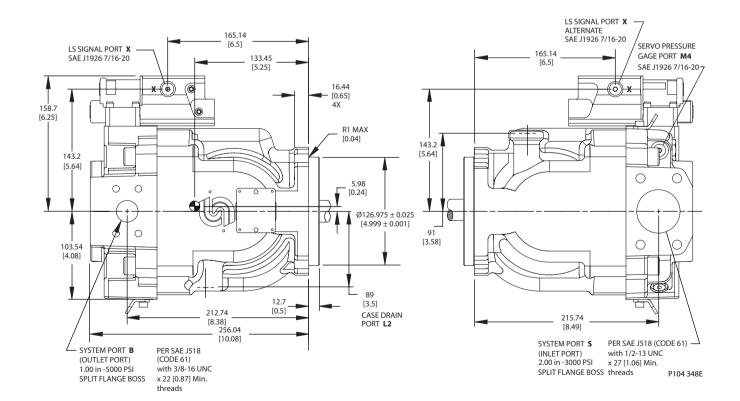
Installation drawings (continued)

Radial Ported Endcap Split Flange Ports

Radial Ported Endcap Rear View

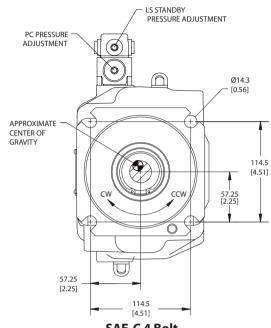


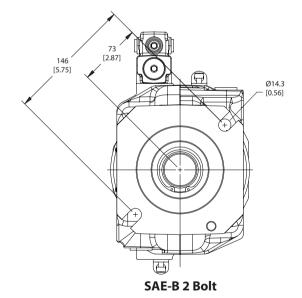



Frame F

Installation drawings (continued)

Radiall Ported Endcap Installation Dimensions

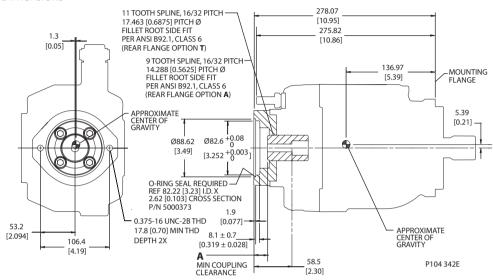



Frame F

Installation drawings (continued)

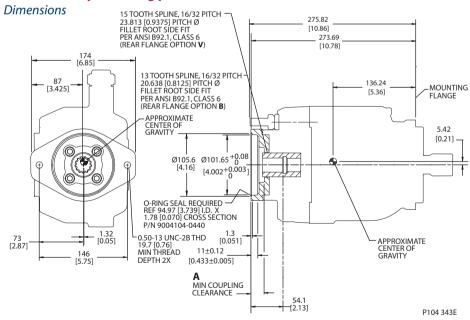
Front Mounting Flange

SAE-C 4 Bolt


P108 453E

Auxiliary mounting pads

SAE-A auxiliary mounting pad


Dimensions

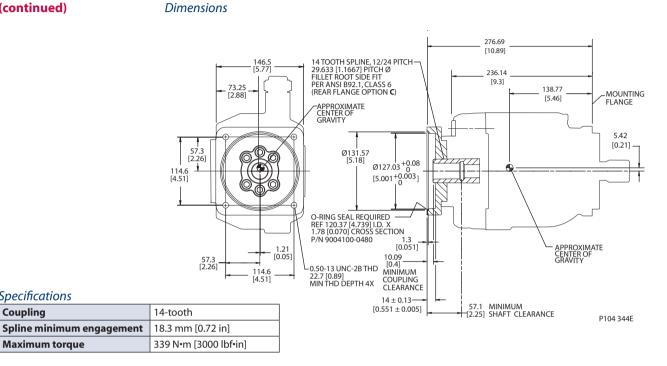
Specifications

Coupling	9-tooth	11-tooth
Spline minimum engagement	13.5 mm [0.53 in]	15 mm [0.59 in]
Maximum torque	107 N•m [950 lbf•in]	147 N•m [1300 lbf•in]
Dimension A	14.9 mm [0.59 in]	16.1 mm [0.63 in]

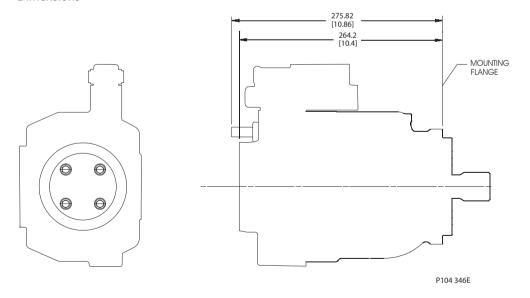
SAE-B auxiliary mounting pad

Specifications

Coupling	13-tooth	15-tooth	
Spline minimum engagement	14.2 mm [0.56 in]	18.9 mm [0.74 in]	
Maximum torque	249 N·m [2200 lbf·in]	339 N•m [3000 lbf•in]	
Dimension A	20.7 mm [0.81 in]	12.7 mm [0.5 in]	

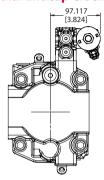

Auxiliary mounting pads (continued)

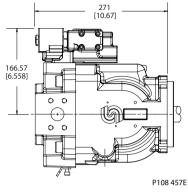
Specifications

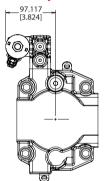

Maximum torque

Coupling

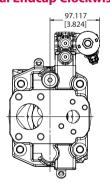
SAE-C auxiliary mounting pad

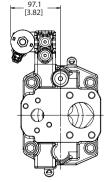

Running Cover Dimensions

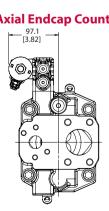



Installation drawings (continued)

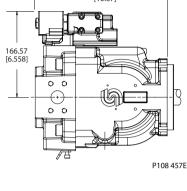
Radial Endcap Clockwise

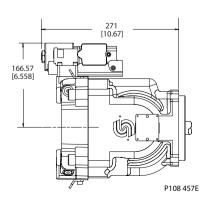






Axial Endcap Clockwise


Axial Endcap Counterclockwise


P108 455E

271 [10.67]

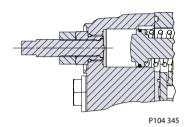
166.57 [6.558]

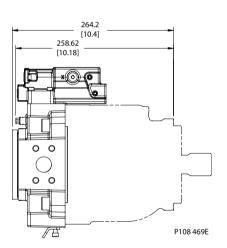
166.57 [6.558]

Frame F

Displacement limiter

Series 45 F90C and F74B open circuit pumps are available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement.

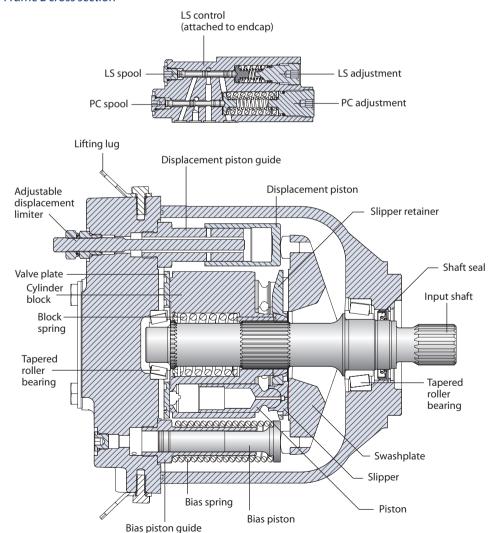

Setting range


	45.6 to 90 cm ³ [2.78 to 5.49 in ³]
F74B	34.1 to 74 cm ³ [1.92 to 4.52 in ³]

Displacement per turn

F90C	6.8 cm ³ /rev [0.41 in ³ /rev]
F74B	6.1 cm ³ /rev [0.37 in ³ /rev]

Displacement limiter cross-section


Frame E

Design

Series 45 Frame E pumps have a single servo piston design with a cradle-type swashplate set in polymer-coated journal bearings. A bias spring and internal forces increase swashplate angle. The servo piston decreases swashplate angle. Nine reciprocating pistons displace fluid from the pump inlet to the pump outlet as the cylinder block rotates on the pump input shaft. The block spring holds the piston slippers to the swashplate via the slipper retainer. The cylinder block rides on a bi-metal valve plate optimized for high volumetric efficiency and low noise. Tapered roller bearings support the input shaft and a viton lip-seal protects against shaft leaks.

An adjustable one spool (PC only, not shown) or two spool (LS and PC) control senses system pressure and load pressure (LS controls). The control ports system pressure to the servo piston to control pump output flow.

Frame E cross section

P104 001E

Frame E

Technical Specifications

			E Frame				
		Unit	100B	130B	147C		
Maximum Displac	ement	cm³ [in³]	100 [6.1]	130 [7.93]	147 [8.97]		
Working Input	Minimum		500	500	500		
Speed	Continuous	min ⁻¹ (rpm)	2450	2200	2100		
	Maximum		2880	2600	2475		
Working	Continuous	bar [psi]	310 [4495]	310 [4495]	260 [3770]		
Pressure	Maximum	Dai [þsi]	400 [5800]	400 [5800]	350 [5075]		
Flow at rated spee	ed (theoretical)	l/min [US gal/min]	245 [64.7]	286 [75.6]	309 [81.5]		
Input torque at m (theoretical) at 49	aximum displacement ° C [120°F]	N•m/bar [lbf•in/1000 psi]	1.592 [972]	2.07 [1263.6]	2.341 [1428.8]		
Mass moment of i		kg•m² [slug•ft²]	0.0128 [0.00944]	0.0128 [0.00944]	0.0128 [0.00944]		
Weight	Axial ports	ka [lb]	52 [115]				
	Radial ports	kg [lb]	56 [123]				
External Shaft	External moment (M _e)	N•m [lbf•in]	455 [4027]	360 [3186]	396 [3505]		
Loads	Thrust in (T _{in}), out (T _{out})	N [lbf]	2846 [640]	2846 [640] 1735 [390] 2113 [4			
Mounting flange	Vibratory (continuous)	N•m [lbf•in]	1920 [17000]				
load moments	Shock (maximum)	[חיוון [וווייוו]	6779 [60000]				

Order code

Code description

Code	Description
R	Product Frame, Variable Open Circuit Pump
S	Rotation
P	Displacement
С	Control Type
D	Pressure Compensator Setting
E	Load Sense Setting
F	Not Used
G	Choke Orifice
Н	Gain Orifice
J	Input Shaft/Auxiliary Mount/Endcap
K	Shaft Seal/Front Mounting Flange/Housing Ports
L	Displacement Limiter
М	Special Hardware
N	Special Features

_				E Frame	
K	Product		100B	130B	147C
ER		E Frame, variable displacement open circuit pump	•	•	•

S Rotation

L	Left Hand (counterclockwise)	•	•	•	
R	Right Hand (clockwise)	•	•	•	

P Displacement

	100B	100 cm³/rev [6.10 in³/rev]	•		
•	130B	130 cm³/rev [7.93 in³/rev]		•	
•	147C	147 cm³/rev [8.97 in³/rev]			•

SAUER Series 45 Axial Piston Control Technical Information Series 45 Axial Piston Open Circuit Pumps

Frame E

Order code (continued	I)
-----------------------	----

R	S	P	C	D	E	F	G	Н	J	K	L	М	N

C Control type

		100B	130B	147C
PC	Pressure Compensator	•	•	•
BC*	Pressure Compensator [>280 bar]	•	•	
RP	Remote Pressure Compensator	•	•	•
BP*	Remote Pressure Compensator [>280 bar]	•	•	
LS	Load Sensing/Pressure Comp.	•	•	•
BS*	Load Sensing/Pressure Comp. [>280 bar]	•	•	
LB	Load Sensing/Pressure Comp. with internal bleed orifice	•	•	•
BB*	Load Sensing/Pressure Comp. with internal bleed orifice [>280 bar]	•	•	
AN	Electric On/Off w/Pressure Comp. (NO, 12VDC) Left	•	•	•
CN	Electric On/Off w/Pressure Comp. (NO, 24VDC) Left	•	•	•
AR	Electric On/Off w/Pressure Comp. (NC, 12VDC) Left	•	•	•
CR	Electric On/Off w/Pressure Comp. (NC, 24VDC) Left	•	•	•
AF	Electric On/Off w/Pressure Comp. (NO, 12VDC) Right	•	•	•
AT	Electric On/Off w/Pressure Comp. (NO, 24VDC) Right	•	•	•
AG	Electric On/Off w/Pressure Comp. (NC, 12VDC) Right	•	•	•
AY	Electric On/Off w/Pressure Comp. (NC, 24VDC) Right	•	•	•
BN*	Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Left	•	•	
DN*	Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Left	•	•	
BR*	Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Left	•	•	
DR*	Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Left	•	•	
BF*	Electric On/Off w/Pressure Comp. (NO, 12VDC) [>280 bar] Right	•	•	
DF*	Electric On/Off w/Pressure Comp. (NO, 24VDC) [>280 bar] Right	•	•	
BE*	Electric On/Off w/Pressure Comp. (NC, 12VDC) [>280 bar] Right	•	•	
BG*	Electric On/Off w/Pressure Comp. (NC, 24VDC) [>280 bar] Right	•	•	
AX	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Left	•	•	•
CL	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Left		•	•
AH	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Left	•	•	•
AL	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Left	•	•	•
AW	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) Right	•	•	•
CK	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) Right	•	•	•
AV	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) Right	•	•	•
AK	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) Right	•	•	•
BX*	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Left	•	•	
DL*	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Left	•	•	
BH*	Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Left	•	•	
BL*	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Left	•	•	
BW*	Electric Proportional Pressure Control w/Pressure Comp. (NO,12VDC) [>280 bar] Right	•	•	
DK*	Electric Proportional Pressure Control w/Pressure Comp. (NO,24VDC) [>280 bar] Right Electric Proportional Pressure Control w/Pressure Comp. (NC,12VDC) [>280 bar] Right	•	•	
BM*		•	•	
FA*	Electric Proportional Pressure Control w/Pressure Comp. (NC,24VDC) [>280 bar] Right	•	•	•
FB*	Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Right Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Left	•	•	
FE*	Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 12VDC) Left Electric On/Off Dump valve w/Pressure Comp. + Load Sense (NC, 24VDC), Left	•	•	•
LE.	Liectife On/On Dunip valve w/Flessure Comp.+ Load Sense (NC, 24VDC), Left			

Left - E-Frame: CW Only, F-Frame: CW Only, J-frame: CW Axial, CCW Radial Right - E-Frame: CCW Only, F-Frame: CCW Only, J-frame: CCW Axial, CW Radial * Not available on 147cc pumps

Frame E

Order code (continued)

R	S	P	c	D	E	F	G	Н	J	K	L	M	N

D PC settir	E Frame			
	100B	130B	147C	
Example	25 = 250 bar (3625 psi)			
10-26	100 to 260 bar [1450 to 3771 psi]	•	•	•
27-28	270 to 280 bar [3916 to 4061 psi]	•	•	
29-31	290-310 bar [4206 to 4496 psi]	•	•	

E Load sensing setting (2 digit code, 1 bar increments)

Example	20 = 20 bar (290 psi)			
10-34	10 to 34 bar [145 to 508 psi]	•	•	•
NN	Not applicable (pressure compensated only controls)	•	•	•

F Not used

NN	Not applicable	•	•	

G Pilot/Choke Orifice

- 1					
	N	None (standard)	•	•	•

H Gain Orifice

3	1.0 mm diameter	•	•	•
---	-----------------	---	---	---

Series 45 Axial Piston Open Circuit Pumps

Frame E

Order code (continued)

R S	P	c	D	E	F	G	н	J	K	L	М	N

J Input Shaft

K5	.5 inch straight keyed						
S1	14 tooth 12/24 pitch						
S2	17 tooth, 12/24 pitch						
S4	13 tooth, 8/16 pitch						

Auxiliary Mount/Endcap Style

Auxiliary Description	Endcap Style	Inlet Porting	Outlet Porting	Endcap Description	Code
None	Axial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	NL
None	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	NP
Running Cover	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	RP
SAE-A, 11 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	TP
SAE-A, 9 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	AP
SAE-B, 13 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	ВР
SAE-B, 14 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	LP
SAE-BB, 13 teeth/with M12 thread	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port M12 metric threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port M12 metric threads)	U6
SAE-BB, 15 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	VP
SAE-C, 14 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	СР
SAE-CC, 17 teeth	Radial	Split Flange	Split Flange	Inlet - Code 61 Split Flange Port 4 Bolt (2.5 inch port 0.5 inch threads) Outlet - Code 62 Split Flange Port 4 Bolt (1.25 inch port 0.5 inch threads)	WP

J Input Shaft/Auxiliary Mount/Endcap

		E Frame							
	100B	130B	147C						
K5AP	•	•	•						
K5BP	•	•	•						
K5CP			•						
K5NL		•	•						
K5NP	•	•	•						
K5RP	•	•	•						
K5VP	•	•	•						
S1AP	•	•	•						
S1BP	•	•	•						
S1CP	•	•	•						
S1LP			•						
S1NL	•	•	•						
S1NP	•	•	•						
S1RP	•	•	•						
S1TP	•	•	•						
S1VP			•						
S2AP	•								

Available Combinations

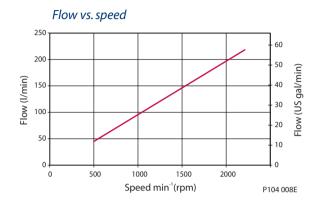
E Frame								
100B	130B	147C						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
•	•	•						
		100B 130B						

Frame E

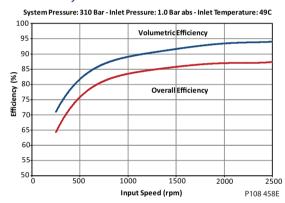
NNN

None

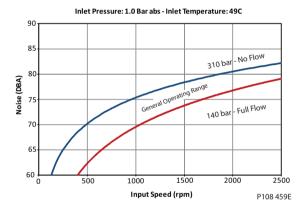
Order code (continued)


R	S	P	C	D	E	F	G	Н	J	K	L	M	N

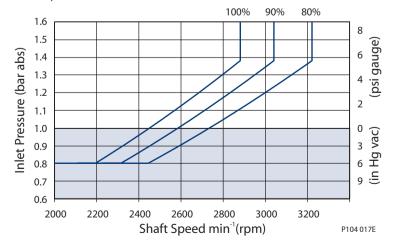

				E Frame					
K	Shaft s	eal	100B	130B	147C				
Α		Single (Viton)	•	•	•				
K	Mounti	ng flange and housing port style							
1		SAE-C Flange 4-bolt/SAE O-ring boss ports	•	•	•				
K	Not use	d							
N		Not applicable	•	•	•				
L	Displac	ement limiter							
NN	IN	None (plugged)	•	•					
AA	Α	Adjustable, factory set at max angle	•	•	•				
М	Special	hardware							
NN	IN	None	•	•	•				
N	N Special features								


Performance E100B

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].

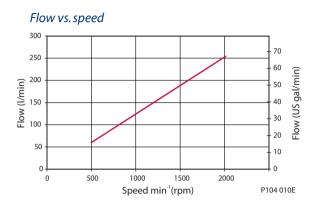


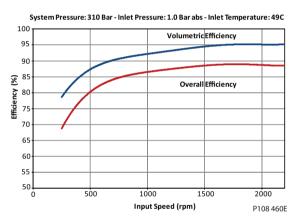
Efficiency



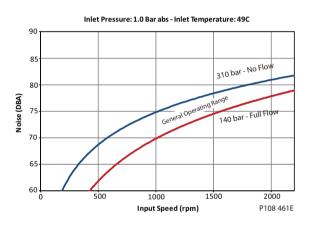
Noise

The chart on the right shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life.

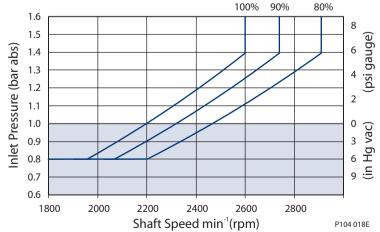

Inlet pressure vs. speed


Performance E130B

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].



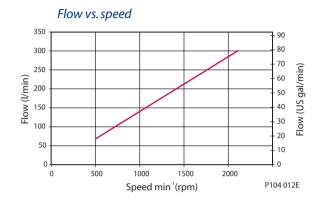
Efficiency



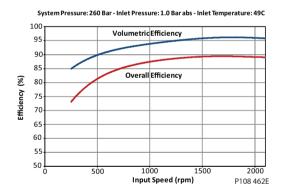
Noise

Inlet pressure vs. speed

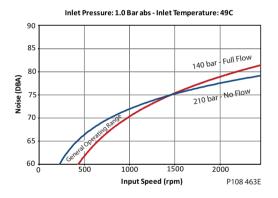
The chart on the right shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life.



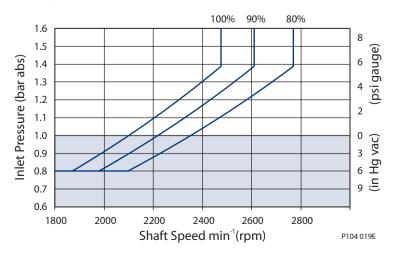
Frame E


Performance E147C

Flow and power data valid at 49°C [120°F] and viscosity of 17.8 mm²/sec [88 SUS].



Efficiency



Noise

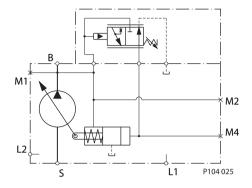
Inlet pressure vs. speed

The chart on the right shows allowable inlet pressure and speed at various displacements. Greater speeds and lower inlet pressures are possible at reduced displacement. Operating outside of acceptable limits reduces pump life.

Frame E

Hydraulic Controls

Pressure Compensated Controls


Response/recovery times

(ms)	Response	Recovery
E100B	45	175
E130B	55	175
E147C	60	190

PC Setting range

Model	PC	ВС
E100B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
E130B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
E147C	100-260 bar	N/A
	[1450-3770 psi]	

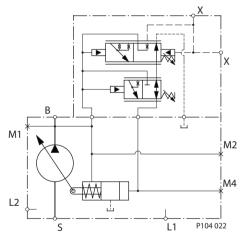
Schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge portM4 = Servo pressure gauge port

Remote Pressure Compensated Controls


Response/recovery times

(ms)	Response	Recovery
E100B	45	175
E130B	55	175
E147C	60	190

PC Setting range

Model	RP	BP
E100B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
E130B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
E147C	100-260 bar	N/A
	[1450-3770 psi]	

Schematic

Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge portM4 = Servo pressure gauge port

X = Remote PC port

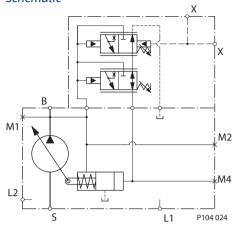
Frame E

Hydraulic Controls (continued)

Load Sensing/Pressure Compensated

Response/recovery times

Response	Recovery		
45	200		
50	200		
60	200		
	45 50		


PC Setting range

Model	LS	BS
E100B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
E130B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
E147C	100-260 bar	N/A
	[1450-3770 psi]	

LS setting range

Model	bar	psi
All	10-30	145-435

Schematic

Legend

B = Outlet S = Inlet L1, L2 = Case drain

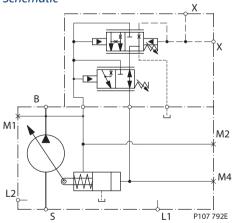
M2 = System pressure gauge port M4 = Servo pressure gauge port

X = LS signal port

Load Sensing with Bleed Orifice/Pressure Compensated

Response/recovery times

(ms)	Response	Recovery	
E100B	45	200	
E130B	50	200	
E147C	60	200	


PC Setting range

Model	LB	BB
E100B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
E130B	100-280 bar	290-310 bar
	[1450-4060 psi]	[4205-4495 psi]
E147C	100-260 bar	N/A
	[1450-3770 psi]	

LS setting range

Model	bar	psi
All	10-30	145–435

Schematic

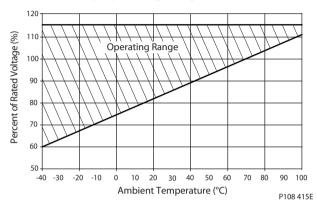
Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge portM4 = Servo pressure gauge port

X = LS signal port

Frame E


Electric Controls

Connectors

Description	Quantity	Ordering Number
Mating Connector	1	Deutsch® DT06-2S
Wedge Lock	1	Deutsch® W25
Socket Contact (16 and 18 AWG)	2	Deutsch® 0462-201-16141
Sauer-Danfoss mating connector kit	1	K29657

Continuous Duty Operating Range

Solenoid Data - Normally Closed

Voltage	12V	24V
Threshold Control [mA] (310/260 bar PC setting, oil temp X)	200/400	100/200
End Current [mA] (20 bar LS setting, oil temp X)	1200	600

Solenoid Data - Normally Open

Voltage	12V	24V
Threshold Control [mA] (20 bar LS setting, oil temp X)	0	0
End Current [mA] (260/310 bar PC setting, oil temp X)	1000/1100	500/550

Hysteresis

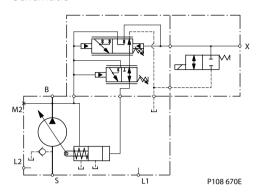
Frame	Frame Hysteresis	
E100B, E130B Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure)		
E147C	Input hysteresis <4% (control current): Output hysteresis <4.5% (system pressure)	

Electric Controls (continued)

Normally Closed Electric On/Off with Pressure Compensation Controls

Response/Recovery times*

(msec)	Response	Recovery		
E100B	45	175		
E130B	55	175		
E147C	60	190		


^{*} Without servo control orifice

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

Frame	AG, AR (12V)	BE, BR (12V)	AY, CR (24V)	BG, DR (24V)
E100B	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi	100-280 bar [1450-4060] psi	290-310 bar [4205-4495] psi
E147C	100-260 bar [1450-3770] psi	Not Available	100-260 bar [1450-3770] psi	Not Available

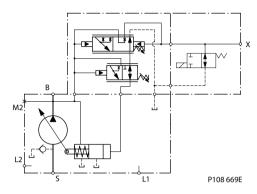
Frame E

Electric Controls (continued)

Normally Open Electric On/Off with Pressure Compensation Controls

Response/Recovery times*

(msec)	Response	Recovery
E100B	45	175
E130B	55	175
E147C	60	190


^{*} Without servo control orifice

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Schematic

Legend

B = Outlet S = Inlet L1,L2 = Case drain

M2 = System pressure gauge port

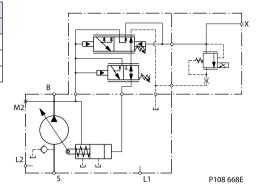
X = Load Sense Port

Frame	AF, AN (12V)	BF, BN (12V)	AT, CN (24V)	DF, DN (24V)
E100B	100-280 bar	290-310 bar	100-280 bar	290-310 bar
E130B	[1450-4060] psi	[4205-4495] psi	[1450-4060] psi	[4205-4495] psi
E147C	100-260 bar [1450-3770] psi	Not Available	100-260 bar [1450-3770] psi	Not Available

Electric Controls (continued)

Normally Closed Electric Proportional with Pressure Compensation Controls

Response/Recovery times


	0.8mm Orifice		1.0mm Ori	fice
(msec)	Response	Recovery	Response	Recovery
E100B	45	530	45	405
E130B	55	530	55	405
E147C	60	580	60	440

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Schematic

Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

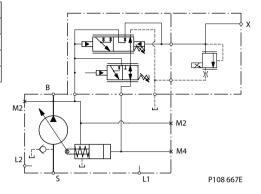
Frame	AH, AV (12V)	BH, BM (12V)	AK, AL (24V)	BK, BL (24V)
E100B	100-280 bar	290-310 bar	100-280 bar	290-310 bar
E130E	[1450-4060] psi	[4205-4495] psi	[1450-4060] psi	[4205-4495] psi
E1470	100-260 bar [1450-3770] psi	Not Available	100-260 bar [1450-3770] psi	Not Available

Frame E

Electric Controls (continued)

Normally Open Electric Proportional with Pressure Compensation Controls

Response/Recovery times


	0.8mm Orifice		1.0mm Orifice	
(msec)	Response	Recovery	Response	Recovery
E100B	45	530	45	405
E130B	55	530	55	405
E147C	60	580	60	440

For fan-drive systems, and systems with motors, select an LS setting no less than 15 bar to enhance system stability. As the LS setting is reduced, the risk for system instability may be increased. A 20 bar LS setting is recommended as a starting point for all new applications.

LS setting range

Model	bar	psi
All	10 - 40	[145 - 580]

Schematic

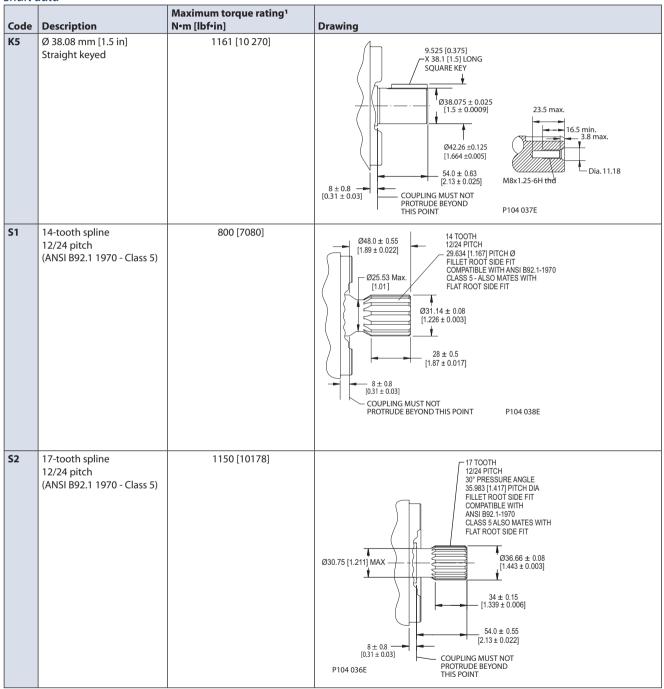
Legend

B = Outlet S = Inlet L1, L2 = Case drain

M2 = System pressure gauge port

X = Load Sense Port

Frame	AW, AX (12V)	BW, BX (12V)	CK, CL (24V)	DK, DL (24V)
E100B	100-280 bar	290-310 bar	100-280 bar	290-310 bar
E130B	[1450-4060] psi	[4205-4495] psi	[1450-4060] psi	[4205-4495] psi
E147C	100-260 bar [1450-3770] psi	Not Available	100-260 bar [1450-3770] psi	Not Available



Series 45 Axial Piston Open Circuit Pumps SAUER Series 45 Axial Piston (Technical Information

Frame F

Input shafts

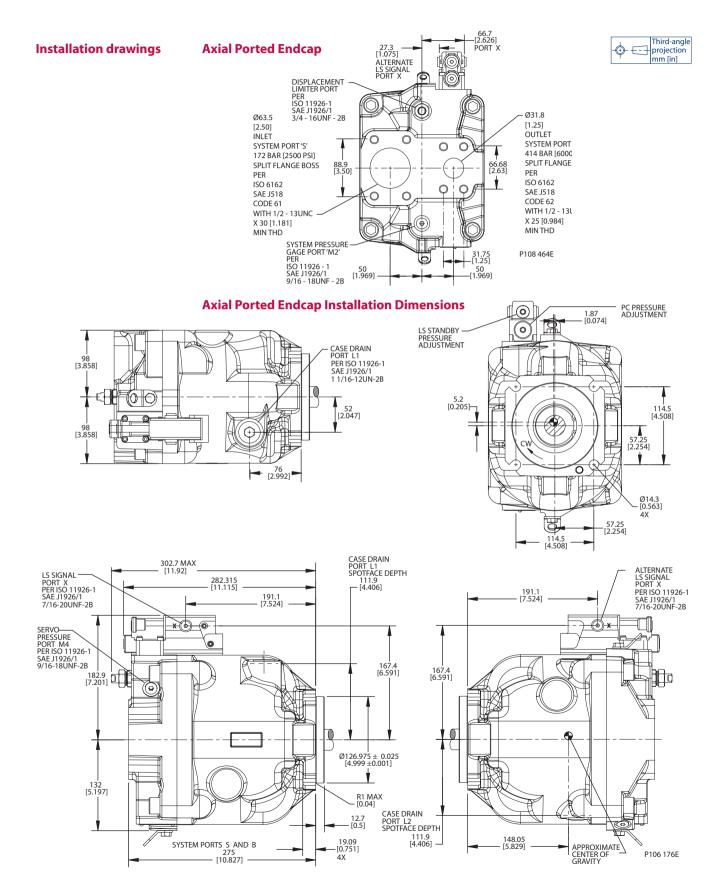
Shaft data

^{1.} See *Input shaft torque ratings*, page 31 for an explanation of maximum torque.

Series 45 Axial Piston Open Circuit Pumps

Frame E

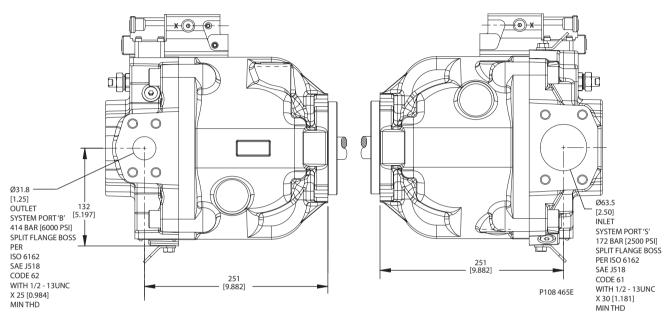
Input shafts (continued)

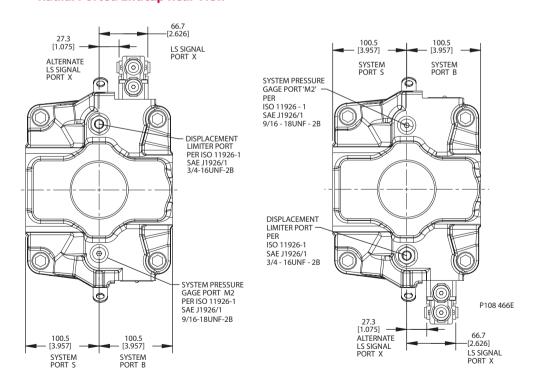

Shaft data

Code	Description	Maximum torque rating¹ N•m [lbf•in]	Drawing
S4	13-tooth spline 8/16 pitch (ANSI B92.1 1970 - Class 5)	1560 [13 807]	13 TOOTH 8/16 PITCH 30° PRESSURE ANGLE 41.28 [16:25] PITCH DIA FILLET ROOT SIDE FIT COMPATIBLE WITH ANSI B92.1-1970 CLASS 5 ALSO MATES WITH FLAT ROOT SIDE FIT O43.94 ± 0.08 [1.73 ± 0.003] 42 ± 0.15 [1.654 ± 0.006] 67.0 ± 0.55 [2.64 ± 0.022] COUPLING MUST NOT PROTRUDE BEYOND THIS POINT

^{1.} See *Input shaft torque ratings*, page 31 for an explanation of maximum torque.

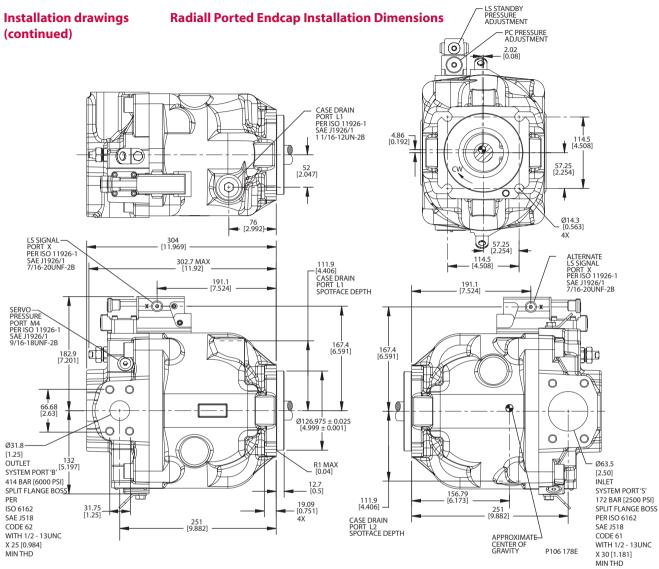
Frame E

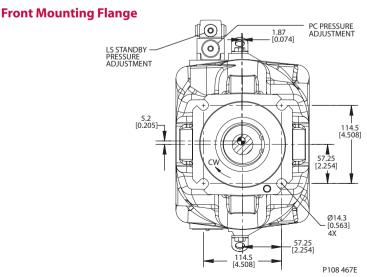



Frame E

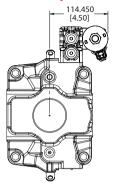
Installation drawings (continued)

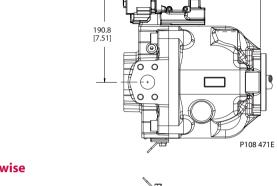
Radial Ported Endcap Split Flange Ports

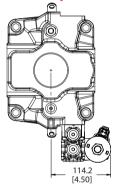



Radial Ported Endcap Rear View

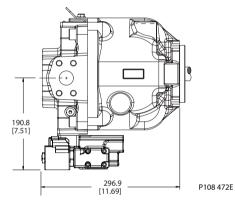
Frame E

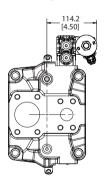


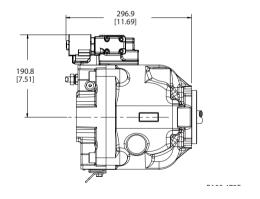

Frame E

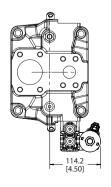

Installation drawings (continued)

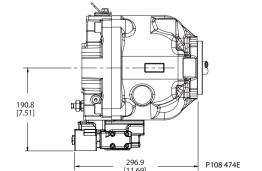
Radial Endcap Clockwise



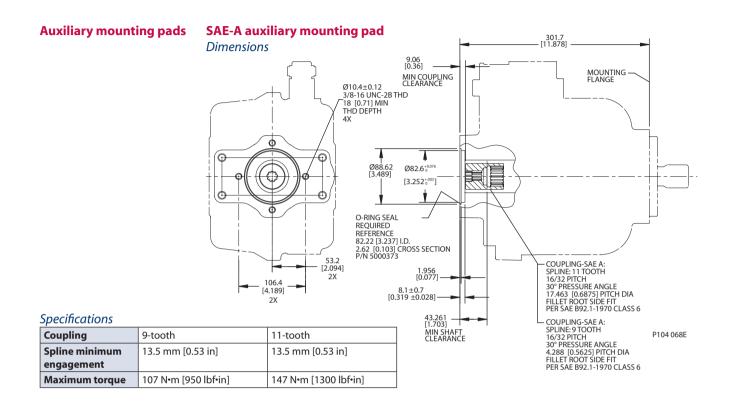

Radial Endcap Counterclockwise

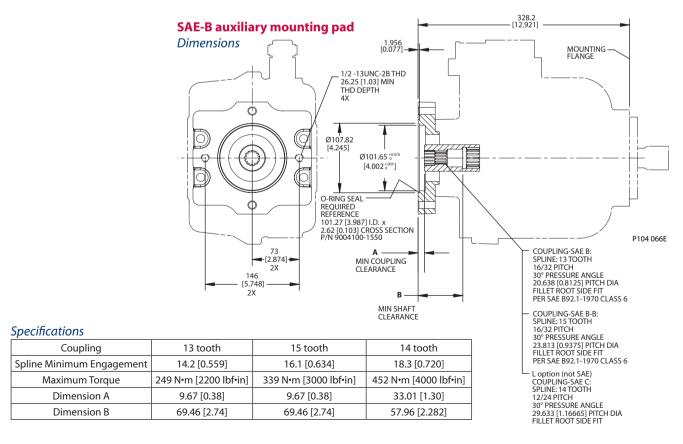


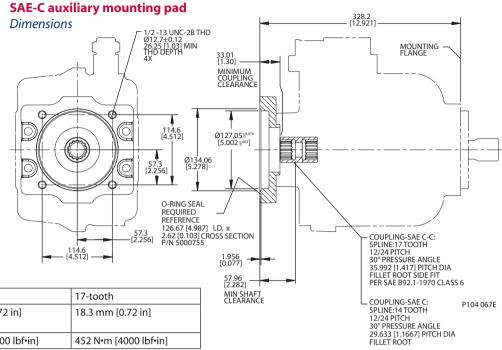

Axial Endcap Clockwise



Axial Endcap Counterclockwise



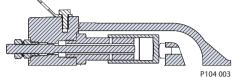



Frame E

Auxiliary mounting pads (continued)

Specifications

Coupling	14-tooth	17-tooth
Spline minimum	18.3 mm [0.72 in]	18.3 mm [0.72 in]
engagement		
Maximum torque	452 N•m [4000 lbf•in]	452 N•m [4000 lbf•in]

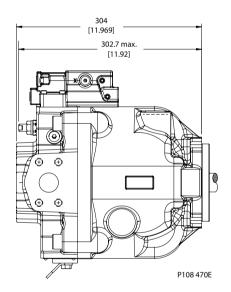


Frame E

Displacement Limiters

E Frame open circuit pumps are available with an optional adjustable displacement limiter. This adjustable stop limits the pump's maximum displacement.

Displacement limiter cross-section



Setting range

E100B	40 to 100 cm ³ [2.44 to 6.1 in ³]	
E130B	70 to 130 cm ³ [4.27 to 7.93 in ³]	
E147C	87 to 147 cm ³ [5.31 to 8.97 in ³]	

Displacement per turn

<u> </u>		
E100B	8.4 cm ³ /rev [0.51 in ³ /rev]	
E130B	8.4 cm ³ /rev [0.51 in ³ /rev]	
E147C	8.4 cm ³ /rev [0.51 in ³ /rev]	

Series 45 Axial Piston Control Technical Information Series 45 Axial Piston Open Circuit Pumps Notes

Products we offer:

- Bent Axis Motors
- Closed Circuit Axial Piston Pumps and Motors
- Displays
- **Electrohydraulic Power Steering**
- Electrohydraulics
- Hydraulic Power Steering
- **Integrated Systems**
- **Joysticks and Control Handles**
- Microcontrollers and Software
- **Open Circuit Axial Piston Pumps**
- **Orbital Motors**
- PLUS+1™ GUIDE
- **Proportional Valves**
- Sensors
- Steering
- **Transit Mixer Drives**

Members of the Sauer-Danfoss Group:

Comatrol

www.comatrol.com

Schwarzmüller-Inverter

www.schwarzmueller-inverter.com

Turolla

www.turollaocg.com

Hydro-Gear

www.hydro-gear.com

Sauer-Danfoss-Daikin

www.sauer-danfoss-daikin.com

Sauer-Danfoss is a global manufacturer and supplier of highquality hydraulic and electronic components. We specialize in providing state-of-the-art technology and solutions that excel in the harsh operating conditions of the mobile off-highway market. Building on our extensive applications expertise, we work closely with our customers to ensure exceptional performance for a broad range of off-highway vehicles.

We help OEMs around the world speed up system development, reduce costs and bring vehicles to market faster. Sauer-Danfoss – Your Strongest Partner in Mobile Hydraulics.

Go to www.sauer-danfoss.com for further product information.

Wherever off-highway vehicles are at work, so is Sauer-Danfoss.

We offer expert worldwide support for our customers, ensuring the best possible solutions for outstanding performance. And with an extensive network of Global Service Partners, we also provide comprehensive global service for all of our components.

Please contact the Sauer-Danfoss representative nearest you.

Local address:

Sauer-Danfoss (US) Company 2800 East 13th Street Ames, IA 50010, USA Phone: +1 515 239 6000 Fax: +1 515 239 6618

Sauer-Danfoss ApS DK-6430 Nordborg, Denmark Phone: +45 7488 4444 Fax: +45 7488 4400

Sauer-Danfoss GmbH & Co. OHG Postfach 2460, D-24531 Neumünster Krokamp 35, D-24539 Neumünster, Germany 1-5-28 Nishimiyahara, Yodogawa-ku

Phone: +49 4321 871 0 +49 4321 871 122

Sauer-Danfoss-Daikin LTD. Shin-Osaka TERASAKI 3rd Bldg. 6F Osaka 532-0004, Japan

Phone: +81 6 6395 6066 Fax: +81 6 6395 8585